// -*- C++ -*- //===------------------------------- simd ---------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef _LIBCPP_EXPERIMENTAL_SIMD #define _LIBCPP_EXPERIMENTAL_SIMD /* experimental/simd synopsis namespace std::experimental { inline namespace parallelism_v2 { namespace simd_abi { struct scalar {}; template <int N> struct fixed_size {}; template <typename T> inline constexpr int max_fixed_size = implementation-defined; template <typename T> using compatible = implementation-defined; template <typename T> using native = implementation-defined; } // simd_abi struct element_aligned_tag {}; struct vector_aligned_tag {}; template <size_t> struct overaligned_tag {}; inline constexpr element_aligned_tag element_aligned{}; inline constexpr vector_aligned_tag vector_aligned{}; template <size_t N> inline constexpr overaligned_tag<N> overaligned{}; // traits [simd.traits] template <class T> struct is_abi_tag; template <class T> inline constexpr bool is_abi_tag_v = is_abi_tag<T>::value; template <class T> struct is_simd; template <class T> inline constexpr bool is_simd_v = is_simd<T>::value; template <class T> struct is_simd_mask; template <class T> inline constexpr bool is_simd_mask_v = is_simd_mask<T>::value; template <class T> struct is_simd_flag_type; template <class T> inline constexpr bool is_simd_flag_type_v = is_simd_flag_type<T>::value; template <class T, size_t N> struct abi_for_size { using type = see below; }; template <class T, size_t N> using abi_for_size_t = typename abi_for_size<T, N>::type; template <class T, class Abi = simd_abi::compatible<T>> struct simd_size; template <class T, class Abi = simd_abi::compatible<T>> inline constexpr size_t simd_size_v = simd_size<T, Abi>::value; template <class T, class U = typename T::value_type> struct memory_alignment; template <class T, class U = typename T::value_type> inline constexpr size_t memory_alignment_v = memory_alignment<T, U>::value; // class template simd [simd.class] template <class T, class Abi = simd_abi::compatible<T>> class simd; template <class T> using native_simd = simd<T, simd_abi::native<T>>; template <class T, int N> using fixed_size_simd = simd<T, simd_abi::fixed_size<N>>; // class template simd_mask [simd.mask.class] template <class T, class Abi = simd_abi::compatible<T>> class simd_mask; template <class T> using native_simd_mask = simd_mask<T, simd_abi::native<T>>; template <class T, int N> using fixed_size_simd_mask = simd_mask<T, simd_abi::fixed_size<N>>; // casts [simd.casts] template <class T, class U, class Abi> see below simd_cast(const simd<U, Abi>&); template <class T, class U, class Abi> see below static_simd_cast(const simd<U, Abi>&); template <class T, class Abi> fixed_size_simd<T, simd_size_v<T, Abi>> to_fixed_size(const simd<T, Abi>&) noexcept; template <class T, class Abi> fixed_size_simd_mask<T, simd_size_v<T, Abi>> to_fixed_size(const simd_mask<T, Abi>&) noexcept; template <class T, size_t N> native_simd<T> to_native(const fixed_size_simd<T, N>&) noexcept; template <class T, size_t N> native_simd_mask<T> to_native(const fixed_size_simd_mask<T, N>> &) noexcept; template <class T, size_t N> simd<T> to_compatible(const fixed_size_simd<T, N>&) noexcept; template <class T, size_t N> simd_mask<T> to_compatible(const fixed_size_simd_mask<T, N>&) noexcept; template <size_t... Sizes, class T, class Abi> tuple<simd<T, abi_for_size_t<Sizes>>...> split(const simd<T, Abi>&); template <size_t... Sizes, class T, class Abi> tuple<simd_mask<T, abi_for_size_t<Sizes>>...> split(const simd_mask<T, Abi>&); template <class V, class Abi> array<V, simd_size_v<typename V::value_type, Abi> / V::size()> split( const simd<typename V::value_type, Abi>&); template <class V, class Abi> array<V, simd_size_v<typename V::value_type, Abi> / V::size()> split( const simd_mask<typename V::value_type, Abi>&); template <class T, class... Abis> simd<T, abi_for_size_t<T, (simd_size_v<T, Abis> + ...)>> concat(const simd<T, Abis>&...); template <class T, class... Abis> simd_mask<T, abi_for_size_t<T, (simd_size_v<T, Abis> + ...)>> concat(const simd_mask<T, Abis>&...); // reductions [simd.mask.reductions] template <class T, class Abi> bool all_of(const simd_mask<T, Abi>&) noexcept; template <class T, class Abi> bool any_of(const simd_mask<T, Abi>&) noexcept; template <class T, class Abi> bool none_of(const simd_mask<T, Abi>&) noexcept; template <class T, class Abi> bool some_of(const simd_mask<T, Abi>&) noexcept; template <class T, class Abi> int popcount(const simd_mask<T, Abi>&) noexcept; template <class T, class Abi> int find_first_set(const simd_mask<T, Abi>&); template <class T, class Abi> int find_last_set(const simd_mask<T, Abi>&); bool all_of(see below) noexcept; bool any_of(see below) noexcept; bool none_of(see below) noexcept; bool some_of(see below) noexcept; int popcount(see below) noexcept; int find_first_set(see below) noexcept; int find_last_set(see below) noexcept; // masked assignment [simd.whereexpr] template <class M, class T> class const_where_expression; template <class M, class T> class where_expression; // masked assignment [simd.mask.where] template <class T> struct nodeduce { using type = T; }; // exposition only template <class T> using nodeduce_t = typename nodeduce<T>::type; // exposition only template <class T, class Abi> where_expression<simd_mask<T, Abi>, simd<T, Abi>> where(const typename simd<T, Abi>::mask_type&, simd<T, Abi>&) noexcept; template <class T, class Abi> const_where_expression<simd_mask<T, Abi>, const simd<T, Abi>> where(const typename simd<T, Abi>::mask_type&, const simd<T, Abi>&) noexcept; template <class T, class Abi> where_expression<simd_mask<T, Abi>, simd_mask<T, Abi>> where(const nodeduce_t<simd_mask<T, Abi>>&, simd_mask<T, Abi>&) noexcept; template <class T, class Abi> const_where_expression<simd_mask<T, Abi>, const simd_mask<T, Abi>> where(const nodeduce_t<simd_mask<T, Abi>>&, const simd_mask<T, Abi>&) noexcept; template <class T> where_expression<bool, T> where(see below k, T& d) noexcept; template <class T> const_where_expression<bool, const T> where(see below k, const T& d) noexcept; // reductions [simd.reductions] template <class T, class Abi, class BinaryOperation = std::plus<>> T reduce(const simd<T, Abi>&, BinaryOperation = BinaryOperation()); template <class M, class V, class BinaryOperation> typename V::value_type reduce(const const_where_expression<M, V>& x, typename V::value_type neutral_element, BinaryOperation binary_op); template <class M, class V> typename V::value_type reduce(const const_where_expression<M, V>& x, plus<> binary_op = plus<>()); template <class M, class V> typename V::value_type reduce(const const_where_expression<M, V>& x, multiplies<> binary_op); template <class M, class V> typename V::value_type reduce(const const_where_expression<M, V>& x, bit_and<> binary_op); template <class M, class V> typename V::value_type reduce(const const_where_expression<M, V>& x, bit_or<> binary_op); template <class M, class V> typename V::value_type reduce(const const_where_expression<M, V>& x, bit_xor<> binary_op); template <class T, class Abi> T hmin(const simd<T, Abi>&); template <class M, class V> T hmin(const const_where_expression<M, V>&); template <class T, class Abi> T hmax(const simd<T, Abi>&); template <class M, class V> T hmax(const const_where_expression<M, V>&); // algorithms [simd.alg] template <class T, class Abi> simd<T, Abi> min(const simd<T, Abi>&, const simd<T, Abi>&) noexcept; template <class T, class Abi> simd<T, Abi> max(const simd<T, Abi>&, const simd<T, Abi>&) noexcept; template <class T, class Abi> std::pair<simd<T, Abi>, simd<T, Abi>> minmax(const simd<T, Abi>&, const simd<T, Abi>&) noexcept; template <class T, class Abi> simd<T, Abi> clamp(const simd<T, Abi>& v, const simd<T, Abi>& lo, const simd<T, Abi>& hi); // [simd.whereexpr] template <class M, class T> class const_where_expression { const M& mask; // exposition only T& data; // exposition only public: const_where_expression(const const_where_expression&) = delete; const_where_expression& operator=(const const_where_expression&) = delete; remove_const_t<T> operator-() const &&; template <class U, class Flags> void copy_to(U* mem, Flags f) const &&; }; template <class M, class T> class where_expression : public const_where_expression<M, T> { public: where_expression(const where_expression&) = delete; where_expression& operator=(const where_expression&) = delete; template <class U> void operator=(U&& x); template <class U> void operator+=(U&& x); template <class U> void operator-=(U&& x); template <class U> void operator*=(U&& x); template <class U> void operator/=(U&& x); template <class U> void operator%=(U&& x); template <class U> void operator&=(U&& x); template <class U> void operator|=(U&& x); template <class U> void operator^=(U&& x); template <class U> void operator<<=(U&& x); template <class U> void operator>>=(U&& x); void operator++(); void operator++(int); void operator--(); void operator--(int); template <class U, class Flags> void copy_from(const U* mem, Flags); }; // [simd.class] template <class T, class Abi> class simd { public: using value_type = T; using reference = see below; using mask_type = simd_mask<T, Abi>; using abi_type = Abi; static constexpr size_t size() noexcept; simd() = default; // implicit type conversion constructor template <class U> simd(const simd<U, simd_abi::fixed_size<size()>>&); // implicit broadcast constructor (see below for constraints) template <class U> simd(U&& value); // generator constructor (see below for constraints) template <class G> explicit simd(G&& gen); // load constructor template <class U, class Flags> simd(const U* mem, Flags f); // loads [simd.load] template <class U, class Flags> void copy_from(const U* mem, Flags f); // stores [simd.store] template <class U, class Flags> void copy_to(U* mem, Flags f) const; // scalar access [simd.subscr] reference operator[](size_t); value_type operator[](size_t) const; // unary operators [simd.unary] simd& operator++(); simd operator++(int); simd& operator--(); simd operator--(int); mask_type operator!() const; simd operator~() const; // see below simd operator+() const; simd operator-() const; // binary operators [simd.binary] friend simd operator+ (const simd&, const simd&); friend simd operator- (const simd&, const simd&); friend simd operator* (const simd&, const simd&); friend simd operator/ (const simd&, const simd&); friend simd operator% (const simd&, const simd&); friend simd operator& (const simd&, const simd&); friend simd operator| (const simd&, const simd&); friend simd operator^ (const simd&, const simd&); friend simd operator<<(const simd&, const simd&); friend simd operator>>(const simd&, const simd&); friend simd operator<<(const simd&, int); friend simd operator>>(const simd&, int); // compound assignment [simd.cassign] friend simd& operator+= (simd&, const simd&); friend simd& operator-= (simd&, const simd&); friend simd& operator*= (simd&, const simd&); friend simd& operator/= (simd&, const simd&); friend simd& operator%= (simd&, const simd&); friend simd& operator&= (simd&, const simd&); friend simd& operator|= (simd&, const simd&); friend simd& operator^= (simd&, const simd&); friend simd& operator<<=(simd&, const simd&); friend simd& operator>>=(simd&, const simd&); friend simd& operator<<=(simd&, int); friend simd& operator>>=(simd&, int); // compares [simd.comparison] friend mask_type operator==(const simd&, const simd&); friend mask_type operator!=(const simd&, const simd&); friend mask_type operator>=(const simd&, const simd&); friend mask_type operator<=(const simd&, const simd&); friend mask_type operator> (const simd&, const simd&); friend mask_type operator< (const simd&, const simd&); }; // [simd.math] template <class Abi> using scharv = simd<signed char, Abi>; // exposition only template <class Abi> using shortv = simd<short, Abi>; // exposition only template <class Abi> using intv = simd<int, Abi>; // exposition only template <class Abi> using longv = simd<long int, Abi>; // exposition only template <class Abi> using llongv = simd<long long int, Abi>; // exposition only template <class Abi> using floatv = simd<float, Abi>; // exposition only template <class Abi> using doublev = simd<double, Abi>; // exposition only template <class Abi> using ldoublev = simd<long double, Abi>; // exposition only template <class T, class V> using samesize = fixed_size_simd<T, V::size()>; // exposition only template <class Abi> floatv<Abi> acos(floatv<Abi> x); template <class Abi> doublev<Abi> acos(doublev<Abi> x); template <class Abi> ldoublev<Abi> acos(ldoublev<Abi> x); template <class Abi> floatv<Abi> asin(floatv<Abi> x); template <class Abi> doublev<Abi> asin(doublev<Abi> x); template <class Abi> ldoublev<Abi> asin(ldoublev<Abi> x); template <class Abi> floatv<Abi> atan(floatv<Abi> x); template <class Abi> doublev<Abi> atan(doublev<Abi> x); template <class Abi> ldoublev<Abi> atan(ldoublev<Abi> x); template <class Abi> floatv<Abi> atan2(floatv<Abi> y, floatv<Abi> x); template <class Abi> doublev<Abi> atan2(doublev<Abi> y, doublev<Abi> x); template <class Abi> ldoublev<Abi> atan2(ldoublev<Abi> y, ldoublev<Abi> x); template <class Abi> floatv<Abi> cos(floatv<Abi> x); template <class Abi> doublev<Abi> cos(doublev<Abi> x); template <class Abi> ldoublev<Abi> cos(ldoublev<Abi> x); template <class Abi> floatv<Abi> sin(floatv<Abi> x); template <class Abi> doublev<Abi> sin(doublev<Abi> x); template <class Abi> ldoublev<Abi> sin(ldoublev<Abi> x); template <class Abi> floatv<Abi> tan(floatv<Abi> x); template <class Abi> doublev<Abi> tan(doublev<Abi> x); template <class Abi> ldoublev<Abi> tan(ldoublev<Abi> x); template <class Abi> floatv<Abi> acosh(floatv<Abi> x); template <class Abi> doublev<Abi> acosh(doublev<Abi> x); template <class Abi> ldoublev<Abi> acosh(ldoublev<Abi> x); template <class Abi> floatv<Abi> asinh(floatv<Abi> x); template <class Abi> doublev<Abi> asinh(doublev<Abi> x); template <class Abi> ldoublev<Abi> asinh(ldoublev<Abi> x); template <class Abi> floatv<Abi> atanh(floatv<Abi> x); template <class Abi> doublev<Abi> atanh(doublev<Abi> x); template <class Abi> ldoublev<Abi> atanh(ldoublev<Abi> x); template <class Abi> floatv<Abi> cosh(floatv<Abi> x); template <class Abi> doublev<Abi> cosh(doublev<Abi> x); template <class Abi> ldoublev<Abi> cosh(ldoublev<Abi> x); template <class Abi> floatv<Abi> sinh(floatv<Abi> x); template <class Abi> doublev<Abi> sinh(doublev<Abi> x); template <class Abi> ldoublev<Abi> sinh(ldoublev<Abi> x); template <class Abi> floatv<Abi> tanh(floatv<Abi> x); template <class Abi> doublev<Abi> tanh(doublev<Abi> x); template <class Abi> ldoublev<Abi> tanh(ldoublev<Abi> x); template <class Abi> floatv<Abi> exp(floatv<Abi> x); template <class Abi> doublev<Abi> exp(doublev<Abi> x); template <class Abi> ldoublev<Abi> exp(ldoublev<Abi> x); template <class Abi> floatv<Abi> exp2(floatv<Abi> x); template <class Abi> doublev<Abi> exp2(doublev<Abi> x); template <class Abi> ldoublev<Abi> exp2(ldoublev<Abi> x); template <class Abi> floatv<Abi> expm1(floatv<Abi> x); template <class Abi> doublev<Abi> expm1(doublev<Abi> x); template <class Abi> ldoublev<Abi> expm1(ldoublev<Abi> x); template <class Abi> floatv<Abi> frexp(floatv<Abi> value, samesize<int, floatv<Abi>>* exp); template <class Abi> doublev<Abi> frexp(doublev<Abi> value, samesize<int, doublev<Abi>>* exp); template <class Abi> ldoublev<Abi> frexp(ldoublev<Abi> value, samesize<int, ldoublev<Abi>>* exp); template <class Abi> samesize<int, floatv<Abi>> ilogb(floatv<Abi> x); template <class Abi> samesize<int, doublev<Abi>> ilogb(doublev<Abi> x); template <class Abi> samesize<int, ldoublev<Abi>> ilogb(ldoublev<Abi> x); template <class Abi> floatv<Abi> ldexp(floatv<Abi> x, samesize<int, floatv<Abi>> exp); template <class Abi> doublev<Abi> ldexp(doublev<Abi> x, samesize<int, doublev<Abi>> exp); template <class Abi> ldoublev<Abi> ldexp(ldoublev<Abi> x, samesize<int, ldoublev<Abi>> exp); template <class Abi> floatv<Abi> log(floatv<Abi> x); template <class Abi> doublev<Abi> log(doublev<Abi> x); template <class Abi> ldoublev<Abi> log(ldoublev<Abi> x); template <class Abi> floatv<Abi> log10(floatv<Abi> x); template <class Abi> doublev<Abi> log10(doublev<Abi> x); template <class Abi> ldoublev<Abi> log10(ldoublev<Abi> x); template <class Abi> floatv<Abi> log1p(floatv<Abi> x); template <class Abi> doublev<Abi> log1p(doublev<Abi> x); template <class Abi> ldoublev<Abi> log1p(ldoublev<Abi> x); template <class Abi> floatv<Abi> log2(floatv<Abi> x); template <class Abi> doublev<Abi> log2(doublev<Abi> x); template <class Abi> ldoublev<Abi> log2(ldoublev<Abi> x); template <class Abi> floatv<Abi> logb(floatv<Abi> x); template <class Abi> doublev<Abi> logb(doublev<Abi> x); template <class Abi> ldoublev<Abi> logb(ldoublev<Abi> x); template <class Abi> floatv<Abi> modf(floatv<Abi> value, floatv<Abi>* iptr); template <class Abi> doublev<Abi> modf(doublev<Abi> value, doublev<Abi>* iptr); template <class Abi> ldoublev<Abi> modf(ldoublev<Abi> value, ldoublev<Abi>* iptr); template <class Abi> floatv<Abi> scalbn(floatv<Abi> x, samesize<int, floatv<Abi>> n); template <class Abi> doublev<Abi> scalbn(doublev<Abi> x, samesize<int, doublev<Abi>> n); template <class Abi> ldoublev<Abi> scalbn(ldoublev<Abi> x, samesize<int, ldoublev<Abi>> n); template <class Abi> floatv<Abi> scalbln(floatv<Abi> x, samesize<long int, floatv<Abi>> n); template <class Abi> doublev<Abi> scalbln(doublev<Abi> x, samesize<long int, doublev<Abi>> n); template <class Abi> ldoublev<Abi> scalbln(ldoublev<Abi> x, samesize<long int, ldoublev<Abi>> n); template <class Abi> floatv<Abi> cbrt(floatv<Abi> x); template <class Abi> doublev<Abi> cbrt(doublev<Abi> x); template <class Abi> ldoublev<Abi> cbrt(ldoublev<Abi> x); template <class Abi> scharv<Abi> abs(scharv<Abi> j); template <class Abi> shortv<Abi> abs(shortv<Abi> j); template <class Abi> intv<Abi> abs(intv<Abi> j); template <class Abi> longv<Abi> abs(longv<Abi> j); template <class Abi> llongv<Abi> abs(llongv<Abi> j); template <class Abi> floatv<Abi> abs(floatv<Abi> j); template <class Abi> doublev<Abi> abs(doublev<Abi> j); template <class Abi> ldoublev<Abi> abs(ldoublev<Abi> j); template <class Abi> floatv<Abi> hypot(floatv<Abi> x, floatv<Abi> y); template <class Abi> doublev<Abi> hypot(doublev<Abi> x, doublev<Abi> y); template <class Abi> ldoublev<Abi> hypot(doublev<Abi> x, doublev<Abi> y); template <class Abi> floatv<Abi> hypot(floatv<Abi> x, floatv<Abi> y, floatv<Abi> z); template <class Abi> doublev<Abi> hypot(doublev<Abi> x, doublev<Abi> y, doublev<Abi> z); template <class Abi> ldoublev<Abi> hypot(ldoublev<Abi> x, ldoublev<Abi> y, ldoublev<Abi> z); template <class Abi> floatv<Abi> pow(floatv<Abi> x, floatv<Abi> y); template <class Abi> doublev<Abi> pow(doublev<Abi> x, doublev<Abi> y); template <class Abi> ldoublev<Abi> pow(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> floatv<Abi> sqrt(floatv<Abi> x); template <class Abi> doublev<Abi> sqrt(doublev<Abi> x); template <class Abi> ldoublev<Abi> sqrt(ldoublev<Abi> x); template <class Abi> floatv<Abi> erf(floatv<Abi> x); template <class Abi> doublev<Abi> erf(doublev<Abi> x); template <class Abi> ldoublev<Abi> erf(ldoublev<Abi> x); template <class Abi> floatv<Abi> erfc(floatv<Abi> x); template <class Abi> doublev<Abi> erfc(doublev<Abi> x); template <class Abi> ldoublev<Abi> erfc(ldoublev<Abi> x); template <class Abi> floatv<Abi> lgamma(floatv<Abi> x); template <class Abi> doublev<Abi> lgamma(doublev<Abi> x); template <class Abi> ldoublev<Abi> lgamma(ldoublev<Abi> x); template <class Abi> floatv<Abi> tgamma(floatv<Abi> x); template <class Abi> doublev<Abi> tgamma(doublev<Abi> x); template <class Abi> ldoublev<Abi> tgamma(ldoublev<Abi> x); template <class Abi> floatv<Abi> ceil(floatv<Abi> x); template <class Abi> doublev<Abi> ceil(doublev<Abi> x); template <class Abi> ldoublev<Abi> ceil(ldoublev<Abi> x); template <class Abi> floatv<Abi> floor(floatv<Abi> x); template <class Abi> doublev<Abi> floor(doublev<Abi> x); template <class Abi> ldoublev<Abi> floor(ldoublev<Abi> x); template <class Abi> floatv<Abi> nearbyint(floatv<Abi> x); template <class Abi> doublev<Abi> nearbyint(doublev<Abi> x); template <class Abi> ldoublev<Abi> nearbyint(ldoublev<Abi> x); template <class Abi> floatv<Abi> rint(floatv<Abi> x); template <class Abi> doublev<Abi> rint(doublev<Abi> x); template <class Abi> ldoublev<Abi> rint(ldoublev<Abi> x); template <class Abi> samesize<long int, floatv<Abi>> lrint(floatv<Abi> x); template <class Abi> samesize<long int, doublev<Abi>> lrint(doublev<Abi> x); template <class Abi> samesize<long int, ldoublev<Abi>> lrint(ldoublev<Abi> x); template <class Abi> samesize<long long int, floatv<Abi>> llrint(floatv<Abi> x); template <class Abi> samesize<long long int, doublev<Abi>> llrint(doublev<Abi> x); template <class Abi> samesize<long long int, ldoublev<Abi>> llrint(ldoublev<Abi> x); template <class Abi> floatv<Abi> round(floatv<Abi> x); template <class Abi> doublev<Abi> round(doublev<Abi> x); template <class Abi> ldoublev<Abi> round(ldoublev<Abi> x); template <class Abi> samesize<long int, floatv<Abi>> lround(floatv<Abi> x); template <class Abi> samesize<long int, doublev<Abi>> lround(doublev<Abi> x); template <class Abi> samesize<long int, ldoublev<Abi>> lround(ldoublev<Abi> x); template <class Abi> samesize<long long int, floatv<Abi>> llround(floatv<Abi> x); template <class Abi> samesize<long long int, doublev<Abi>> llround(doublev<Abi> x); template <class Abi> samesize<long long int, ldoublev<Abi>> llround(ldoublev<Abi> x); template <class Abi> floatv<Abi> trunc(floatv<Abi> x); template <class Abi> doublev<Abi> trunc(doublev<Abi> x); template <class Abi> ldoublev<Abi> trunc(ldoublev<Abi> x); template <class Abi> floatv<Abi> fmod(floatv<Abi> x, floatv<Abi> y); template <class Abi> doublev<Abi> fmod(doublev<Abi> x, doublev<Abi> y); template <class Abi> ldoublev<Abi> fmod(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> floatv<Abi> remainder(floatv<Abi> x, floatv<Abi> y); template <class Abi> doublev<Abi> remainder(doublev<Abi> x, doublev<Abi> y); template <class Abi> ldoublev<Abi> remainder(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> floatv<Abi> remquo(floatv<Abi> x, floatv<Abi> y, samesize<int, floatv<Abi>>* quo); template <class Abi> doublev<Abi> remquo(doublev<Abi> x, doublev<Abi> y, samesize<int, doublev<Abi>>* quo); template <class Abi> ldoublev<Abi> remquo(ldoublev<Abi> x, ldoublev<Abi> y, samesize<int, ldoublev<Abi>>* quo); template <class Abi> floatv<Abi> copysign(floatv<Abi> x, floatv<Abi> y); template <class Abi> doublev<Abi> copysign(doublev<Abi> x, doublev<Abi> y); template <class Abi> ldoublev<Abi> copysign(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> doublev<Abi> nan(const char* tagp); template <class Abi> floatv<Abi> nanf(const char* tagp); template <class Abi> ldoublev<Abi> nanl(const char* tagp); template <class Abi> floatv<Abi> nextafter(floatv<Abi> x, floatv<Abi> y); template <class Abi> doublev<Abi> nextafter(doublev<Abi> x, doublev<Abi> y); template <class Abi> ldoublev<Abi> nextafter(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> floatv<Abi> nexttoward(floatv<Abi> x, ldoublev<Abi> y); template <class Abi> doublev<Abi> nexttoward(doublev<Abi> x, ldoublev<Abi> y); template <class Abi> ldoublev<Abi> nexttoward(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> floatv<Abi> fdim(floatv<Abi> x, floatv<Abi> y); template <class Abi> doublev<Abi> fdim(doublev<Abi> x, doublev<Abi> y); template <class Abi> ldoublev<Abi> fdim(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> floatv<Abi> fmax(floatv<Abi> x, floatv<Abi> y); template <class Abi> doublev<Abi> fmax(doublev<Abi> x, doublev<Abi> y); template <class Abi> ldoublev<Abi> fmax(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> floatv<Abi> fmin(floatv<Abi> x, floatv<Abi> y); template <class Abi> doublev<Abi> fmin(doublev<Abi> x, doublev<Abi> y); template <class Abi> ldoublev<Abi> fmin(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> floatv<Abi> fma(floatv<Abi> x, floatv<Abi> y, floatv<Abi> z); template <class Abi> doublev<Abi> fma(doublev<Abi> x, doublev<Abi> y, doublev<Abi> z); template <class Abi> ldoublev<Abi> fma(ldoublev<Abi> x, ldoublev<Abi> y, ldoublev<Abi> z); template <class Abi> samesize<int, floatv<Abi>> fpclassify(floatv<Abi> x); template <class Abi> samesize<int, doublev<Abi>> fpclassify(doublev<Abi> x); template <class Abi> samesize<int, ldoublev<Abi>> fpclassify(ldoublev<Abi> x); template <class Abi> simd_mask<float, Abi> isfinite(floatv<Abi> x); template <class Abi> simd_mask<double, Abi> isfinite(doublev<Abi> x); template <class Abi> simd_mask<long double, Abi> isfinite(ldoublev<Abi> x); template <class Abi> simd_mask<float, Abi> isinf(floatv<Abi> x); template <class Abi> simd_mask<double, Abi> isinf(doublev<Abi> x); template <class Abi> simd_mask<long double, Abi> isinf(ldoublev<Abi> x); template <class Abi> simd_mask<float, Abi> isnan(floatv<Abi> x); template <class Abi> simd_mask<double, Abi> isnan(doublev<Abi> x); template <class Abi> simd_mask<long double, Abi> isnan(ldoublev<Abi> x); template <class Abi> simd_mask<float, Abi> isnormal(floatv<Abi> x); template <class Abi> simd_mask<double, Abi> isnormal(doublev<Abi> x); template <class Abi> simd_mask<long double, Abi> isnormal(ldoublev<Abi> x); template <class Abi> simd_mask<float, Abi> signbit(floatv<Abi> x); template <class Abi> simd_mask<double, Abi> signbit(doublev<Abi> x); template <class Abi> simd_mask<long double, Abi> signbit(ldoublev<Abi> x); template <class Abi> simd_mask<float, Abi> isgreater(floatv<Abi> x, floatv<Abi> y); template <class Abi> simd_mask<double, Abi> isgreater(doublev<Abi> x, doublev<Abi> y); template <class Abi> simd_mask<long double, Abi> isgreater(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> simd_mask<float, Abi> isgreaterequal(floatv<Abi> x, floatv<Abi> y); template <class Abi> simd_mask<double, Abi> isgreaterequal(doublev<Abi> x, doublev<Abi> y); template <class Abi> simd_mask<long double, Abi> isgreaterequal(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> simd_mask<float, Abi> isless(floatv<Abi> x, floatv<Abi> y); template <class Abi> simd_mask<double, Abi> isless(doublev<Abi> x, doublev<Abi> y); template <class Abi> simd_mask<long double, Abi> isless(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> simd_mask<float, Abi> islessequal(floatv<Abi> x, floatv<Abi> y); template <class Abi> simd_mask<double, Abi> islessequal(doublev<Abi> x, doublev<Abi> y); template <class Abi> simd_mask<long double, Abi> islessequal(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> simd_mask<float, Abi> islessgreater(floatv<Abi> x, floatv<Abi> y); template <class Abi> simd_mask<double, Abi> islessgreater(doublev<Abi> x, doublev<Abi> y); template <class Abi> simd_mask<long double, Abi> islessgreater(ldoublev<Abi> x, ldoublev<Abi> y); template <class Abi> simd_mask<float, Abi> isunordered(floatv<Abi> x, floatv<Abi> y); template <class Abi> simd_mask<double, Abi> isunordered(doublev<Abi> x, doublev<Abi> y); template <class Abi> simd_mask<long double, Abi> isunordered(ldoublev<Abi> x, ldoublev<Abi> y); template <class V> struct simd_div_t { V quot, rem; }; template <class Abi> simd_div_t<scharv<Abi>> div(scharv<Abi> numer, scharv<Abi> denom); template <class Abi> simd_div_t<shortv<Abi>> div(shortv<Abi> numer, shortv<Abi> denom); template <class Abi> simd_div_t<intv<Abi>> div(intv<Abi> numer, intv<Abi> denom); template <class Abi> simd_div_t<longv<Abi>> div(longv<Abi> numer, longv<Abi> denom); template <class Abi> simd_div_t<llongv<Abi>> div(llongv<Abi> numer, llongv<Abi> denom); // [simd.mask.class] template <class T, class Abi> class simd_mask { public: using value_type = bool; using reference = see below; using simd_type = simd<T, Abi>; using abi_type = Abi; static constexpr size_t size() noexcept; simd_mask() = default; // broadcast constructor explicit simd_mask(value_type) noexcept; // implicit type conversion constructor template <class U> simd_mask(const simd_mask<U, simd_abi::fixed_size<size()>>&) noexcept; // load constructor template <class Flags> simd_mask(const value_type* mem, Flags); // loads [simd.mask.copy] template <class Flags> void copy_from(const value_type* mem, Flags); template <class Flags> void copy_to(value_type* mem, Flags) const; // scalar access [simd.mask.subscr] reference operator[](size_t); value_type operator[](size_t) const; // unary operators [simd.mask.unary] simd_mask operator!() const noexcept; // simd_mask binary operators [simd.mask.binary] friend simd_mask operator&&(const simd_mask&, const simd_mask&) noexcept; friend simd_mask operator||(const simd_mask&, const simd_mask&) noexcept; friend simd_mask operator& (const simd_mask&, const simd_mask&) noexcept; friend simd_mask operator| (const simd_mask&, const simd_mask&) noexcept; friend simd_mask operator^ (const simd_mask&, const simd_mask&) noexcept; // simd_mask compound assignment [simd.mask.cassign] friend simd_mask& operator&=(simd_mask&, const simd_mask&) noexcept; friend simd_mask& operator|=(simd_mask&, const simd_mask&) noexcept; friend simd_mask& operator^=(simd_mask&, const simd_mask&) noexcept; // simd_mask compares [simd.mask.comparison] friend simd_mask operator==(const simd_mask&, const simd_mask&) noexcept; friend simd_mask operator!=(const simd_mask&, const simd_mask&) noexcept; }; } // parallelism_v2 } // std::experimental */ #include <experimental/__config> #include <algorithm> #include <array> #include <cstddef> #include <functional> #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) #pragma GCC system_header #endif _LIBCPP_BEGIN_NAMESPACE_EXPERIMENTAL_SIMD #if _LIBCPP_STD_VER >= 17 enum class _StorageKind { _Scalar, _Array, _VecExt, }; template <_StorageKind __kind, int _Np> struct __simd_abi {}; template <class _Tp, class _Abi> class __simd_storage {}; template <class _Tp, int __num_element> class __simd_storage<_Tp, __simd_abi<_StorageKind::_Array, __num_element>> { std::array<_Tp, __num_element> __storage_; template <class, class> friend struct simd; template <class, class> friend struct simd_mask; public: _Tp __get(size_t __index) const noexcept { return __storage_[__index]; }; void __set(size_t __index, _Tp __val) noexcept { __storage_[__index] = __val; } }; template <class _Tp> class __simd_storage<_Tp, __simd_abi<_StorageKind::_Scalar, 1>> { _Tp __storage_; template <class, class> friend struct simd; template <class, class> friend struct simd_mask; public: _Tp __get(size_t __index) const noexcept { return (&__storage_)[__index]; }; void __set(size_t __index, _Tp __val) noexcept { (&__storage_)[__index] = __val; } }; #ifndef _LIBCPP_HAS_NO_VECTOR_EXTENSION constexpr size_t __floor_pow_of_2(size_t __val) { return ((__val - 1) & __val) == 0 ? __val : __floor_pow_of_2((__val - 1) & __val); } constexpr size_t __ceil_pow_of_2(size_t __val) { return __val == 1 ? 1 : __floor_pow_of_2(__val - 1) << 1; } template <class _Tp, size_t __bytes> struct __vec_ext_traits { #if !defined(_LIBCPP_COMPILER_CLANG) typedef _Tp type __attribute__((vector_size(__ceil_pow_of_2(__bytes)))); #endif }; #if defined(_LIBCPP_COMPILER_CLANG) #define _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, _NUM_ELEMENT) \ template <> \ struct __vec_ext_traits<_TYPE, sizeof(_TYPE) * _NUM_ELEMENT> { \ using type = \ _TYPE __attribute__((vector_size(sizeof(_TYPE) * _NUM_ELEMENT))); \ } #define _LIBCPP_SPECIALIZE_VEC_EXT_32(_TYPE) \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 1); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 2); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 3); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 4); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 5); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 6); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 7); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 8); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 9); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 10); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 11); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 12); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 13); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 14); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 15); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 16); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 17); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 18); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 19); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 20); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 21); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 22); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 23); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 24); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 25); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 26); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 27); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 28); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 29); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 30); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 31); \ _LIBCPP_SPECIALIZE_VEC_EXT(_TYPE, 32); _LIBCPP_SPECIALIZE_VEC_EXT_32(char); _LIBCPP_SPECIALIZE_VEC_EXT_32(char16_t); _LIBCPP_SPECIALIZE_VEC_EXT_32(char32_t); _LIBCPP_SPECIALIZE_VEC_EXT_32(wchar_t); _LIBCPP_SPECIALIZE_VEC_EXT_32(signed char); _LIBCPP_SPECIALIZE_VEC_EXT_32(signed short); _LIBCPP_SPECIALIZE_VEC_EXT_32(signed int); _LIBCPP_SPECIALIZE_VEC_EXT_32(signed long); _LIBCPP_SPECIALIZE_VEC_EXT_32(signed long long); _LIBCPP_SPECIALIZE_VEC_EXT_32(unsigned char); _LIBCPP_SPECIALIZE_VEC_EXT_32(unsigned short); _LIBCPP_SPECIALIZE_VEC_EXT_32(unsigned int); _LIBCPP_SPECIALIZE_VEC_EXT_32(unsigned long); _LIBCPP_SPECIALIZE_VEC_EXT_32(unsigned long long); _LIBCPP_SPECIALIZE_VEC_EXT_32(float); _LIBCPP_SPECIALIZE_VEC_EXT_32(double); _LIBCPP_SPECIALIZE_VEC_EXT_32(long double); #undef _LIBCPP_SPECIALIZE_VEC_EXT_32 #undef _LIBCPP_SPECIALIZE_VEC_EXT #endif template <class _Tp, int __num_element> class __simd_storage<_Tp, __simd_abi<_StorageKind::_VecExt, __num_element>> { using _StorageType = typename __vec_ext_traits<_Tp, sizeof(_Tp) * __num_element>::type; _StorageType __storage_; template <class, class> friend struct simd; template <class, class> friend struct simd_mask; public: _Tp __get(size_t __index) const noexcept { return __storage_[__index]; }; void __set(size_t __index, _Tp __val) noexcept { __storage_[__index] = __val; } }; #endif // _LIBCPP_HAS_NO_VECTOR_EXTENSION template <class _Vp, class _Tp, class _Abi> class __simd_reference { static_assert(std::is_same<_Vp, _Tp>::value, ""); template <class, class> friend struct simd; template <class, class> friend struct simd_mask; __simd_storage<_Tp, _Abi>* __ptr_; size_t __index_; __simd_reference(__simd_storage<_Tp, _Abi>* __ptr, size_t __index) : __ptr_(__ptr), __index_(__index) {} __simd_reference(const __simd_reference&) = default; public: __simd_reference() = delete; __simd_reference& operator=(const __simd_reference&) = delete; operator _Vp() const { return __ptr_->__get(__index_); } __simd_reference operator=(_Vp __value) && { __ptr_->__set(__index_, __value); return *this; } __simd_reference operator++() && { return std::move(*this) = __ptr_->__get(__index_) + 1; } _Vp operator++(int) && { auto __val = __ptr_->__get(__index_); __ptr_->__set(__index_, __val + 1); return __val; } __simd_reference operator--() && { return std::move(*this) = __ptr_->__get(__index_) - 1; } _Vp operator--(int) && { auto __val = __ptr_->__get(__index_); __ptr_->__set(__index_, __val - 1); return __val; } __simd_reference operator+=(_Vp __value) && { return std::move(*this) = __ptr_->__get(__index_) + __value; } __simd_reference operator-=(_Vp __value) && { return std::move(*this) = __ptr_->__get(__index_) - __value; } __simd_reference operator*=(_Vp __value) && { return std::move(*this) = __ptr_->__get(__index_) * __value; } __simd_reference operator/=(_Vp __value) && { return std::move(*this) = __ptr_->__get(__index_) / __value; } __simd_reference operator%=(_Vp __value) && { return std::move(*this) = __ptr_->__get(__index_) % __value; } __simd_reference operator>>=(_Vp __value) && { return std::move(*this) = __ptr_->__get(__index_) >> __value; } __simd_reference operator<<=(_Vp __value) && { return std::move(*this) = __ptr_->__get(__index_) << __value; } __simd_reference operator&=(_Vp __value) && { return std::move(*this) = __ptr_->__get(__index_) & __value; } __simd_reference operator|=(_Vp __value) && { return std::move(*this) = __ptr_->__get(__index_) | __value; } __simd_reference operator^=(_Vp __value) && { return std::move(*this) = __ptr_->__get(__index_) ^ __value; } }; template <class _To, class _From> constexpr decltype(_To{std::declval<_From>()}, true) __is_non_narrowing_convertible_impl(_From) { return true; } template <class _To> constexpr bool __is_non_narrowing_convertible_impl(...) { return false; } template <class _From, class _To> constexpr typename std::enable_if<std::is_arithmetic<_To>::value && std::is_arithmetic<_From>::value, bool>::type __is_non_narrowing_arithmetic_convertible() { return __is_non_narrowing_convertible_impl<_To>(_From{}); } template <class _From, class _To> constexpr typename std::enable_if<!(std::is_arithmetic<_To>::value && std::is_arithmetic<_From>::value), bool>::type __is_non_narrowing_arithmetic_convertible() { return false; } template <class _Tp> constexpr _Tp __variadic_sum() { return _Tp{}; } template <class _Tp, class _Up, class... _Args> constexpr _Tp __variadic_sum(_Up __first, _Args... __rest) { return static_cast<_Tp>(__first) + __variadic_sum<_Tp>(__rest...); } template <class _Tp> struct __nodeduce { using type = _Tp; }; template <class _Tp> constexpr bool __vectorizable() { return std::is_arithmetic<_Tp>::value && !std::is_const<_Tp>::value && !std::is_volatile<_Tp>::value && !std::is_same<_Tp, bool>::value; } _LIBCPP_END_NAMESPACE_EXPERIMENTAL_SIMD _LIBCPP_BEGIN_NAMESPACE_EXPERIMENTAL_SIMD_ABI using scalar = __simd_abi<_StorageKind::_Scalar, 1>; template <int _Np> using fixed_size = __simd_abi<_StorageKind::_Array, _Np>; template <class _Tp> _LIBCPP_INLINE_VAR constexpr size_t max_fixed_size = 32; template <class _Tp> using compatible = fixed_size<16 / sizeof(_Tp)>; #ifndef _LIBCPP_HAS_NO_VECTOR_EXTENSION template <class _Tp> using native = __simd_abi<_StorageKind::_VecExt, _LIBCPP_NATIVE_SIMD_WIDTH_IN_BYTES / sizeof(_Tp)>; #else template <class _Tp> using native = fixed_size<_Tp, _LIBCPP_NATIVE_SIMD_WIDTH_IN_BYTES / sizeof(_Tp)>; #endif // _LIBCPP_HAS_NO_VECTOR_EXTENSION _LIBCPP_END_NAMESPACE_EXPERIMENTAL_SIMD_ABI _LIBCPP_BEGIN_NAMESPACE_EXPERIMENTAL_SIMD template <class _Tp, class _Abi = simd_abi::compatible<_Tp>> class simd; template <class _Tp, class _Abi = simd_abi::compatible<_Tp>> class simd_mask; struct element_aligned_tag {}; struct vector_aligned_tag {}; template <size_t> struct overaligned_tag {}; _LIBCPP_INLINE_VAR constexpr element_aligned_tag element_aligned{}; _LIBCPP_INLINE_VAR constexpr vector_aligned_tag vector_aligned{}; template <size_t _Np> _LIBCPP_INLINE_VAR constexpr overaligned_tag<_Np> overaligned{}; // traits [simd.traits] template <class _Tp> struct is_abi_tag : std::integral_constant<bool, false> {}; template <_StorageKind __kind, int _Np> struct is_abi_tag<__simd_abi<__kind, _Np>> : std::integral_constant<bool, true> {}; template <class _Tp> struct is_simd : std::integral_constant<bool, false> {}; template <class _Tp, class _Abi> struct is_simd<simd<_Tp, _Abi>> : std::integral_constant<bool, true> {}; template <class _Tp> struct is_simd_mask : std::integral_constant<bool, false> {}; template <class _Tp, class _Abi> struct is_simd_mask<simd_mask<_Tp, _Abi>> : std::integral_constant<bool, true> { }; template <class _Tp> struct is_simd_flag_type : std::integral_constant<bool, false> {}; template <> struct is_simd_flag_type<element_aligned_tag> : std::integral_constant<bool, true> {}; template <> struct is_simd_flag_type<vector_aligned_tag> : std::integral_constant<bool, true> {}; template <size_t _Align> struct is_simd_flag_type<overaligned_tag<_Align>> : std::integral_constant<bool, true> {}; template <class _Tp> _LIBCPP_INLINE_VAR constexpr bool is_abi_tag_v = is_abi_tag<_Tp>::value; template <class _Tp> _LIBCPP_INLINE_VAR constexpr bool is_simd_v = is_simd<_Tp>::value; template <class _Tp> _LIBCPP_INLINE_VAR constexpr bool is_simd_mask_v = is_simd_mask<_Tp>::value; template <class _Tp> _LIBCPP_INLINE_VAR constexpr bool is_simd_flag_type_v = is_simd_flag_type<_Tp>::value; template <class _Tp, size_t _Np> struct abi_for_size { using type = simd_abi::fixed_size<_Np>; }; template <class _Tp, size_t _Np> using abi_for_size_t = typename abi_for_size<_Tp, _Np>::type; template <class _Tp, class _Abi = simd_abi::compatible<_Tp>> struct simd_size; template <class _Tp, _StorageKind __kind, int _Np> struct simd_size<_Tp, __simd_abi<__kind, _Np>> : std::integral_constant<size_t, _Np> { static_assert( std::is_arithmetic<_Tp>::value && !std::is_same<typename std::remove_const<_Tp>::type, bool>::value, "Element type should be vectorizable"); }; // TODO: implement it. template <class _Tp, class _Up = typename _Tp::value_type> struct memory_alignment; template <class _Tp, class _Abi = simd_abi::compatible<_Tp>> _LIBCPP_INLINE_VAR constexpr size_t simd_size_v = simd_size<_Tp, _Abi>::value; template <class _Tp, class _Up = typename _Tp::value_type> _LIBCPP_INLINE_VAR constexpr size_t memory_alignment_v = memory_alignment<_Tp, _Up>::value; // class template simd [simd.class] template <class _Tp> using native_simd = simd<_Tp, simd_abi::native<_Tp>>; template <class _Tp, int _Np> using fixed_size_simd = simd<_Tp, simd_abi::fixed_size<_Np>>; // class template simd_mask [simd.mask.class] template <class _Tp> using native_simd_mask = simd_mask<_Tp, simd_abi::native<_Tp>>; template <class _Tp, int _Np> using fixed_size_simd_mask = simd_mask<_Tp, simd_abi::fixed_size<_Np>>; // casts [simd.casts] template <class _Tp> struct __static_simd_cast_traits { template <class _Up, class _Abi> static simd<_Tp, _Abi> __apply(const simd<_Up, _Abi>& __v); }; template <class _Tp, class _NewAbi> struct __static_simd_cast_traits<simd<_Tp, _NewAbi>> { template <class _Up, class _Abi> static typename std::enable_if<simd<_Up, _Abi>::size() == simd<_Tp, _NewAbi>::size(), simd<_Tp, _NewAbi>>::type __apply(const simd<_Up, _Abi>& __v); }; template <class _Tp> struct __simd_cast_traits { template <class _Up, class _Abi> static typename std::enable_if< __is_non_narrowing_arithmetic_convertible<_Up, _Tp>(), simd<_Tp, _Abi>>::type __apply(const simd<_Up, _Abi>& __v); }; template <class _Tp, class _NewAbi> struct __simd_cast_traits<simd<_Tp, _NewAbi>> { template <class _Up, class _Abi> static typename std::enable_if< __is_non_narrowing_arithmetic_convertible<_Up, _Tp>() && simd<_Up, _Abi>::size() == simd<_Tp, _NewAbi>::size(), simd<_Tp, _NewAbi>>::type __apply(const simd<_Up, _Abi>& __v); }; template <class _Tp, class _Up, class _Abi> auto simd_cast(const simd<_Up, _Abi>& __v) -> decltype(__simd_cast_traits<_Tp>::__apply(__v)) { return __simd_cast_traits<_Tp>::__apply(__v); } template <class _Tp, class _Up, class _Abi> auto static_simd_cast(const simd<_Up, _Abi>& __v) -> decltype(__static_simd_cast_traits<_Tp>::__apply(__v)) { return __static_simd_cast_traits<_Tp>::__apply(__v); } template <class _Tp, class _Abi> fixed_size_simd<_Tp, simd_size<_Tp, _Abi>::value> to_fixed_size(const simd<_Tp, _Abi>&) noexcept; template <class _Tp, class _Abi> fixed_size_simd_mask<_Tp, simd_size<_Tp, _Abi>::value> to_fixed_size(const simd_mask<_Tp, _Abi>&) noexcept; template <class _Tp, size_t _Np> native_simd<_Tp> to_native(const fixed_size_simd<_Tp, _Np>&) noexcept; template <class _Tp, size_t _Np> native_simd_mask<_Tp> to_native(const fixed_size_simd_mask<_Tp, _Np>&) noexcept; template <class _Tp, size_t _Np> simd<_Tp> to_compatible(const fixed_size_simd<_Tp, _Np>&) noexcept; template <class _Tp, size_t _Np> simd_mask<_Tp> to_compatible(const fixed_size_simd_mask<_Tp, _Np>&) noexcept; template <size_t... __sizes, class _Tp, class _Abi> tuple<simd<_Tp, abi_for_size_t<_Tp, __sizes>>...> split(const simd<_Tp, _Abi>&); template <size_t... __sizes, class _Tp, class _Abi> tuple<simd_mask<_Tp, abi_for_size_t<_Tp, __sizes>>...> split(const simd_mask<_Tp, _Abi>&); template <class _SimdType, class _Abi> array<_SimdType, simd_size<typename _SimdType::value_type, _Abi>::value / _SimdType::size()> split(const simd<typename _SimdType::value_type, _Abi>&); template <class _SimdType, class _Abi> array<_SimdType, simd_size<typename _SimdType::value_type, _Abi>::value / _SimdType::size()> split(const simd_mask<typename _SimdType::value_type, _Abi>&); template <class _Tp, class... _Abis> simd<_Tp, abi_for_size_t<_Tp, __variadic_sum(simd_size<_Tp, _Abis>::value...)>> concat(const simd<_Tp, _Abis>&...); template <class _Tp, class... _Abis> simd_mask<_Tp, abi_for_size_t<_Tp, __variadic_sum(simd_size<_Tp, _Abis>::value...)>> concat(const simd_mask<_Tp, _Abis>&...); // reductions [simd.mask.reductions] template <class _Tp, class _Abi> bool all_of(const simd_mask<_Tp, _Abi>&) noexcept; template <class _Tp, class _Abi> bool any_of(const simd_mask<_Tp, _Abi>&) noexcept; template <class _Tp, class _Abi> bool none_of(const simd_mask<_Tp, _Abi>&) noexcept; template <class _Tp, class _Abi> bool some_of(const simd_mask<_Tp, _Abi>&) noexcept; template <class _Tp, class _Abi> int popcount(const simd_mask<_Tp, _Abi>&) noexcept; template <class _Tp, class _Abi> int find_first_set(const simd_mask<_Tp, _Abi>&); template <class _Tp, class _Abi> int find_last_set(const simd_mask<_Tp, _Abi>&); bool all_of(bool) noexcept; bool any_of(bool) noexcept; bool none_of(bool) noexcept; bool some_of(bool) noexcept; int popcount(bool) noexcept; int find_first_set(bool) noexcept; int find_last_set(bool) noexcept; // masked assignment [simd.whereexpr] template <class _MaskType, class _Tp> class const_where_expression; template <class _MaskType, class _Tp> class where_expression; // masked assignment [simd.mask.where] template <class _Tp, class _Abi> where_expression<simd_mask<_Tp, _Abi>, simd<_Tp, _Abi>> where(const typename simd<_Tp, _Abi>::mask_type&, simd<_Tp, _Abi>&) noexcept; template <class _Tp, class _Abi> const_where_expression<simd_mask<_Tp, _Abi>, const simd<_Tp, _Abi>> where(const typename simd<_Tp, _Abi>::mask_type&, const simd<_Tp, _Abi>&) noexcept; template <class _Tp, class _Abi> where_expression<simd_mask<_Tp, _Abi>, simd_mask<_Tp, _Abi>> where(const typename __nodeduce<simd_mask<_Tp, _Abi>>::type&, simd_mask<_Tp, _Abi>&) noexcept; template <class _Tp, class _Abi> const_where_expression<simd_mask<_Tp, _Abi>, const simd_mask<_Tp, _Abi>> where(const typename __nodeduce<simd_mask<_Tp, _Abi>>::type&, const simd_mask<_Tp, _Abi>&) noexcept; template <class _Tp> where_expression<bool, _Tp> where(bool, _Tp&) noexcept; template <class _Tp> const_where_expression<bool, const _Tp> where(bool, const _Tp&) noexcept; // reductions [simd.reductions] template <class _Tp, class _Abi, class _BinaryOp = std::plus<_Tp>> _Tp reduce(const simd<_Tp, _Abi>&, _BinaryOp = _BinaryOp()); template <class _MaskType, class _SimdType, class _BinaryOp> typename _SimdType::value_type reduce(const const_where_expression<_MaskType, _SimdType>&, typename _SimdType::value_type neutral_element, _BinaryOp binary_op); template <class _MaskType, class _SimdType> typename _SimdType::value_type reduce(const const_where_expression<_MaskType, _SimdType>&, plus<typename _SimdType::value_type> binary_op = {}); template <class _MaskType, class _SimdType> typename _SimdType::value_type reduce(const const_where_expression<_MaskType, _SimdType>&, multiplies<typename _SimdType::value_type> binary_op); template <class _MaskType, class _SimdType> typename _SimdType::value_type reduce(const const_where_expression<_MaskType, _SimdType>&, bit_and<typename _SimdType::value_type> binary_op); template <class _MaskType, class _SimdType> typename _SimdType::value_type reduce(const const_where_expression<_MaskType, _SimdType>&, bit_or<typename _SimdType::value_type> binary_op); template <class _MaskType, class _SimdType> typename _SimdType::value_type reduce(const const_where_expression<_MaskType, _SimdType>&, bit_xor<typename _SimdType::value_type> binary_op); template <class _Tp, class _Abi> _Tp hmin(const simd<_Tp, _Abi>&); template <class _MaskType, class _SimdType> typename _SimdType::value_type hmin(const const_where_expression<_MaskType, _SimdType>&); template <class _Tp, class _Abi> _Tp hmax(const simd<_Tp, _Abi>&); template <class _MaskType, class _SimdType> typename _SimdType::value_type hmax(const const_where_expression<_MaskType, _SimdType>&); // algorithms [simd.alg] template <class _Tp, class _Abi> simd<_Tp, _Abi> min(const simd<_Tp, _Abi>&, const simd<_Tp, _Abi>&) noexcept; template <class _Tp, class _Abi> simd<_Tp, _Abi> max(const simd<_Tp, _Abi>&, const simd<_Tp, _Abi>&) noexcept; template <class _Tp, class _Abi> std::pair<simd<_Tp, _Abi>, simd<_Tp, _Abi>> minmax(const simd<_Tp, _Abi>&, const simd<_Tp, _Abi>&) noexcept; template <class _Tp, class _Abi> simd<_Tp, _Abi> clamp(const simd<_Tp, _Abi>&, const simd<_Tp, _Abi>&, const simd<_Tp, _Abi>&); // [simd.whereexpr] // TODO implement where expressions. template <class _MaskType, class _Tp> class const_where_expression { public: const_where_expression(const const_where_expression&) = delete; const_where_expression& operator=(const const_where_expression&) = delete; typename remove_const<_Tp>::type operator-() const&&; template <class _Up, class _Flags> void copy_to(_Up*, _Flags) const&&; }; template <class _MaskType, class _Tp> class where_expression : public const_where_expression<_MaskType, _Tp> { public: where_expression(const where_expression&) = delete; where_expression& operator=(const where_expression&) = delete; template <class _Up> void operator=(_Up&&); template <class _Up> void operator+=(_Up&&); template <class _Up> void operator-=(_Up&&); template <class _Up> void operator*=(_Up&&); template <class _Up> void operator/=(_Up&&); template <class _Up> void operator%=(_Up&&); template <class _Up> void operator&=(_Up&&); template <class _Up> void operator|=(_Up&&); template <class _Up> void operator^=(_Up&&); template <class _Up> void operator<<=(_Up&&); template <class _Up> void operator>>=(_Up&&); void operator++(); void operator++(int); void operator--(); void operator--(int); template <class _Up, class _Flags> void copy_from(const _Up*, _Flags); }; // [simd.class] // TODO: implement simd template <class _Tp, class _Abi> class simd { public: using value_type = _Tp; using reference = __simd_reference<_Tp, _Tp, _Abi>; using mask_type = simd_mask<_Tp, _Abi>; using abi_type = _Abi; simd() = default; simd(const simd&) = default; simd& operator=(const simd&) = default; static constexpr size_t size() noexcept { return simd_size<_Tp, _Abi>::value; } private: __simd_storage<_Tp, _Abi> __s_; template <class _Up> static constexpr bool __can_broadcast() { return (std::is_arithmetic<_Up>::value && __is_non_narrowing_arithmetic_convertible<_Up, _Tp>()) || (!std::is_arithmetic<_Up>::value && std::is_convertible<_Up, _Tp>::value) || std::is_same<typename std::remove_const<_Up>::type, int>::value || (std::is_same<typename std::remove_const<_Up>::type, unsigned int>::value && std::is_unsigned<_Tp>::value); } template <class _Generator, size_t... __indicies> static constexpr decltype( std::forward_as_tuple(std::declval<_Generator>()( std::integral_constant<size_t, __indicies>())...), bool()) __can_generate(std::index_sequence<__indicies...>) { return !__variadic_sum<bool>( !__can_broadcast<decltype(std::declval<_Generator>()( std::integral_constant<size_t, __indicies>()))>()...); } template <class _Generator> static bool __can_generate(...) { return false; } template <class _Generator, size_t... __indicies> void __generator_init(_Generator&& __g, std::index_sequence<__indicies...>) { int __not_used[]{((*this)[__indicies] = __g(std::integral_constant<size_t, __indicies>()), 0)...}; (void)__not_used; } public: // implicit type conversion constructor template <class _Up, class = typename std::enable_if< std::is_same<_Abi, simd_abi::fixed_size<size()>>::value && __is_non_narrowing_arithmetic_convertible<_Up, _Tp>()>::type> simd(const simd<_Up, simd_abi::fixed_size<size()>>& __v) { for (size_t __i = 0; __i < size(); __i++) { (*this)[__i] = static_cast<_Tp>(__v[__i]); } } // implicit broadcast constructor template <class _Up, class = typename std::enable_if<__can_broadcast<_Up>()>::type> simd(_Up&& __rv) { auto __v = static_cast<_Tp>(__rv); for (size_t __i = 0; __i < size(); __i++) { (*this)[__i] = __v; } } // generator constructor template <class _Generator, int = typename std::enable_if< __can_generate<_Generator>(std::make_index_sequence<size()>()), int>::type()> explicit simd(_Generator&& __g) { __generator_init(std::forward<_Generator>(__g), std::make_index_sequence<size()>()); } // load constructor template < class _Up, class _Flags, class = typename std::enable_if<__vectorizable<_Up>()>::type, class = typename std::enable_if<is_simd_flag_type<_Flags>::value>::type> simd(const _Up* __buffer, _Flags) { // TODO: optimize for overaligned flags for (size_t __i = 0; __i < size(); __i++) { (*this)[__i] = static_cast<_Tp>(__buffer[__i]); } } // loads [simd.load] template <class _Up, class _Flags> typename std::enable_if<__vectorizable<_Up>() && is_simd_flag_type<_Flags>::value>::type copy_from(const _Up* __buffer, _Flags) { *this = simd(__buffer, _Flags()); } // stores [simd.store] template <class _Up, class _Flags> typename std::enable_if<__vectorizable<_Up>() && is_simd_flag_type<_Flags>::value>::type copy_to(_Up* __buffer, _Flags) const { // TODO: optimize for overaligned flags for (size_t __i = 0; __i < size(); __i++) { __buffer[__i] = static_cast<_Up>((*this)[__i]); } } // scalar access [simd.subscr] reference operator[](size_t __i) { return reference(&__s_, __i); } value_type operator[](size_t __i) const { return __s_.__get(__i); } // unary operators [simd.unary] simd& operator++(); simd operator++(int); simd& operator--(); simd operator--(int); mask_type operator!() const; simd operator~() const; simd operator+() const; simd operator-() const; // binary operators [simd.binary] friend simd operator+(const simd&, const simd&); friend simd operator-(const simd&, const simd&); friend simd operator*(const simd&, const simd&); friend simd operator/(const simd&, const simd&); friend simd operator%(const simd&, const simd&); friend simd operator&(const simd&, const simd&); friend simd operator|(const simd&, const simd&); friend simd operator^(const simd&, const simd&); friend simd operator<<(const simd&, const simd&); friend simd operator>>(const simd&, const simd&); friend simd operator<<(const simd&, int); friend simd operator>>(const simd&, int); // compound assignment [simd.cassign] friend simd& operator+=(simd&, const simd&); friend simd& operator-=(simd&, const simd&); friend simd& operator*=(simd&, const simd&); friend simd& operator/=(simd&, const simd&); friend simd& operator%=(simd&, const simd&); friend simd& operator&=(simd&, const simd&); friend simd& operator|=(simd&, const simd&); friend simd& operator^=(simd&, const simd&); friend simd& operator<<=(simd&, const simd&); friend simd& operator>>=(simd&, const simd&); friend simd& operator<<=(simd&, int); friend simd& operator>>=(simd&, int); // compares [simd.comparison] friend mask_type operator==(const simd&, const simd&); friend mask_type operator!=(const simd&, const simd&); friend mask_type operator>=(const simd&, const simd&); friend mask_type operator<=(const simd&, const simd&); friend mask_type operator>(const simd&, const simd&); friend mask_type operator<(const simd&, const simd&); }; // [simd.mask.class] template <class _Tp, class _Abi> // TODO: implement simd_mask class simd_mask { public: using value_type = bool; // TODO: this is strawman implementation. Turn it into a proxy type. using reference = bool&; using simd_type = simd<_Tp, _Abi>; using abi_type = _Abi; static constexpr size_t size() noexcept; simd_mask() = default; // broadcast constructor explicit simd_mask(value_type) noexcept; // implicit type conversion constructor template <class _Up> simd_mask(const simd_mask<_Up, simd_abi::fixed_size<size()>>&) noexcept; // load constructor template <class _Flags> simd_mask(const value_type*, _Flags); // loads [simd.mask.copy] template <class _Flags> void copy_from(const value_type*, _Flags); template <class _Flags> void copy_to(value_type*, _Flags) const; // scalar access [simd.mask.subscr] reference operator[](size_t); value_type operator[](size_t) const; // unary operators [simd.mask.unary] simd_mask operator!() const noexcept; // simd_mask binary operators [simd.mask.binary] friend simd_mask operator&&(const simd_mask&, const simd_mask&) noexcept; friend simd_mask operator||(const simd_mask&, const simd_mask&) noexcept; friend simd_mask operator&(const simd_mask&, const simd_mask&)noexcept; friend simd_mask operator|(const simd_mask&, const simd_mask&) noexcept; friend simd_mask operator^(const simd_mask&, const simd_mask&) noexcept; // simd_mask compound assignment [simd.mask.cassign] friend simd_mask& operator&=(simd_mask&, const simd_mask&) noexcept; friend simd_mask& operator|=(simd_mask&, const simd_mask&) noexcept; friend simd_mask& operator^=(simd_mask&, const simd_mask&) noexcept; // simd_mask compares [simd.mask.comparison] friend simd_mask operator==(const simd_mask&, const simd_mask&) noexcept; friend simd_mask operator!=(const simd_mask&, const simd_mask&) noexcept; }; #endif // _LIBCPP_STD_VER >= 17 _LIBCPP_END_NAMESPACE_EXPERIMENTAL_SIMD #endif /* _LIBCPP_EXPERIMENTAL_SIMD */