// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Defines a simple integer rectangle class. The containment semantics // are array-like; that is, the coordinate (x, y) is considered to be // contained by the rectangle, but the coordinate (x + width, y) is not. // The class will happily let you create malformed rectangles (that is, // rectangles with negative width and/or height), but there will be assertions // in the operations (such as Contains()) to complain in this case. #ifndef UI_GFX_GEOMETRY_RECT_H_ #define UI_GFX_GEOMETRY_RECT_H_ #include <cmath> #include <iosfwd> #include <string> #include "base/logging.h" #include "build/build_config.h" #include "ui/gfx/geometry/point.h" #include "ui/gfx/geometry/safe_integer_conversions.h" #include "ui/gfx/geometry/size.h" #include "ui/gfx/geometry/vector2d.h" #if defined(OS_WIN) typedef struct tagRECT RECT; #elif defined(OS_MACOSX) typedef struct CGRect CGRect; #endif namespace gfx { class Insets; class GFX_EXPORT Rect { public: constexpr Rect() = default; constexpr Rect(int width, int height) : size_(width, height) {} constexpr Rect(int x, int y, int width, int height) : origin_(x, y), size_(GetClampedValue(x, width), GetClampedValue(y, height)) {} constexpr explicit Rect(const Size& size) : size_(size) {} constexpr Rect(const Point& origin, const Size& size) : origin_(origin), size_(GetClampedValue(origin.x(), size.width()), GetClampedValue(origin.y(), size.height())) {} #if defined(OS_WIN) explicit Rect(const RECT& r); #elif defined(OS_MACOSX) explicit Rect(const CGRect& r); #endif #if defined(OS_WIN) // Construct an equivalent Win32 RECT object. RECT ToRECT() const; #elif defined(OS_MACOSX) // Construct an equivalent CoreGraphics object. CGRect ToCGRect() const; #endif constexpr int x() const { return origin_.x(); } // Sets the X position while preserving the width. void set_x(int x) { origin_.set_x(x); size_.set_width(GetClampedValue(x, width())); } constexpr int y() const { return origin_.y(); } // Sets the Y position while preserving the height. void set_y(int y) { origin_.set_y(y); size_.set_height(GetClampedValue(y, height())); } constexpr int width() const { return size_.width(); } void set_width(int width) { size_.set_width(GetClampedValue(x(), width)); } constexpr int height() const { return size_.height(); } void set_height(int height) { size_.set_height(GetClampedValue(y(), height)); } constexpr const Point& origin() const { return origin_; } void set_origin(const Point& origin) { origin_ = origin; // Ensure that width and height remain valid. set_width(width()); set_height(height()); } constexpr const Size& size() const { return size_; } void set_size(const Size& size) { set_width(size.width()); set_height(size.height()); } constexpr int right() const { return x() + width(); } constexpr int bottom() const { return y() + height(); } constexpr Point top_right() const { return Point(right(), y()); } constexpr Point bottom_left() const { return Point(x(), bottom()); } constexpr Point bottom_right() const { return Point(right(), bottom()); } Vector2d OffsetFromOrigin() const { return Vector2d(x(), y()); } void SetRect(int x, int y, int width, int height) { origin_.SetPoint(x, y); // Ensure that width and height remain valid. set_width(width); set_height(height); } // Use in place of SetRect() when you know the edges of the rectangle instead // of the dimensions, rather than trying to determine the width/height // yourself. This safely handles cases where the width/height would overflow. void SetByBounds(int left, int top, int right, int bottom); // Shrink the rectangle by a horizontal and vertical distance on all sides. void Inset(int horizontal, int vertical) { Inset(horizontal, vertical, horizontal, vertical); } // Shrink the rectangle by the given insets. void Inset(const Insets& insets); // Shrink the rectangle by the specified amount on each side. void Inset(int left, int top, int right, int bottom); // Move the rectangle by a horizontal and vertical distance. void Offset(int horizontal, int vertical); void Offset(const Vector2d& distance) { Offset(distance.x(), distance.y()); } void operator+=(const Vector2d& offset); void operator-=(const Vector2d& offset); Insets InsetsFrom(const Rect& inner) const; // Returns true if the area of the rectangle is zero. bool IsEmpty() const { return size_.IsEmpty(); } // A rect is less than another rect if its origin is less than // the other rect's origin. If the origins are equal, then the // shortest rect is less than the other. If the origin and the // height are equal, then the narrowest rect is less than. // This comparison is required to use Rects in sets, or sorted // vectors. bool operator<(const Rect& other) const; // Returns true if the point identified by point_x and point_y falls inside // this rectangle. The point (x, y) is inside the rectangle, but the // point (x + width, y + height) is not. bool Contains(int point_x, int point_y) const; // Returns true if the specified point is contained by this rectangle. bool Contains(const Point& point) const { return Contains(point.x(), point.y()); } // Returns true if this rectangle contains the specified rectangle. bool Contains(const Rect& rect) const; // Returns true if this rectangle intersects the specified rectangle. // An empty rectangle doesn't intersect any rectangle. bool Intersects(const Rect& rect) const; // Computes the intersection of this rectangle with the given rectangle. void Intersect(const Rect& rect); // Computes the union of this rectangle with the given rectangle. The union // is the smallest rectangle containing both rectangles. void Union(const Rect& rect); // Computes the rectangle resulting from subtracting |rect| from |*this|, // i.e. the bounding rect of |Region(*this) - Region(rect)|. void Subtract(const Rect& rect); // Fits as much of the receiving rectangle into the supplied rectangle as // possible, becoming the result. For example, if the receiver had // a x-location of 2 and a width of 4, and the supplied rectangle had // an x-location of 0 with a width of 5, the returned rectangle would have // an x-location of 1 with a width of 4. void AdjustToFit(const Rect& rect); // Returns the center of this rectangle. Point CenterPoint() const; // Becomes a rectangle that has the same center point but with a size capped // at given |size|. void ClampToCenteredSize(const Size& size); // Splits |this| in two halves, |left_half| and |right_half|. void SplitVertically(Rect* left_half, Rect* right_half) const; // Returns true if this rectangle shares an entire edge (i.e., same width or // same height) with the given rectangle, and the rectangles do not overlap. bool SharesEdgeWith(const Rect& rect) const; // Returns the manhattan distance from the rect to the point. If the point is // inside the rect, returns 0. int ManhattanDistanceToPoint(const Point& point) const; // Returns the manhattan distance between the contents of this rect and the // contents of the given rect. That is, if the intersection of the two rects // is non-empty then the function returns 0. If the rects share a side, it // returns the smallest non-zero value appropriate for int. int ManhattanInternalDistance(const Rect& rect) const; std::string ToString() const; bool ApproximatelyEqual(const Rect& rect, int tolerance) const; private: gfx::Point origin_; gfx::Size size_; // Returns true iff a+b would overflow max int. static constexpr bool AddWouldOverflow(int a, int b) { // In this function, GCC tries to make optimizations that would only work if // max - a wouldn't overflow but it isn't smart enough to notice that a > 0. // So cast everything to unsigned to avoid this. As it is guaranteed that // max - a and b are both already positive, the cast is a noop. // // This is intended to be: a > 0 && max - a < b return a > 0 && b > 0 && static_cast<unsigned>(std::numeric_limits<int>::max() - a) < static_cast<unsigned>(b); } // Clamp the size to avoid integer overflow in bottom() and right(). // This returns the width given an origin and a width. // TODO(enne): this should probably use base::ClampAdd, but that // function is not a constexpr. static constexpr int GetClampedValue(int origin, int size) { return AddWouldOverflow(origin, size) ? std::numeric_limits<int>::max() - origin : size; } }; inline bool operator==(const Rect& lhs, const Rect& rhs) { return lhs.origin() == rhs.origin() && lhs.size() == rhs.size(); } inline bool operator!=(const Rect& lhs, const Rect& rhs) { return !(lhs == rhs); } GFX_EXPORT Rect operator+(const Rect& lhs, const Vector2d& rhs); GFX_EXPORT Rect operator-(const Rect& lhs, const Vector2d& rhs); inline Rect operator+(const Vector2d& lhs, const Rect& rhs) { return rhs + lhs; } GFX_EXPORT Rect IntersectRects(const Rect& a, const Rect& b); GFX_EXPORT Rect UnionRects(const Rect& a, const Rect& b); GFX_EXPORT Rect SubtractRects(const Rect& a, const Rect& b); // Constructs a rectangle with |p1| and |p2| as opposite corners. // // This could also be thought of as "the smallest rect that contains both // points", except that we consider points on the right/bottom edges of the // rect to be outside the rect. So technically one or both points will not be // contained within the rect, because they will appear on one of these edges. GFX_EXPORT Rect BoundingRect(const Point& p1, const Point& p2); // Scales the rect and returns the enclosing rect. Use this only the inputs are // known to not overflow. Use ScaleToEnclosingRectSafe if the inputs are // unknown and need to use saturated math. inline Rect ScaleToEnclosingRect(const Rect& rect, float x_scale, float y_scale) { if (x_scale == 1.f && y_scale == 1.f) return rect; // These next functions cast instead of using e.g. ToFlooredInt() because we // haven't checked to ensure that the clamping behavior of the helper // functions doesn't degrade performance, and callers shouldn't be passing // values that cause overflow anyway. DCHECK(base::IsValueInRangeForNumericType<int>( std::floor(rect.x() * x_scale))); DCHECK(base::IsValueInRangeForNumericType<int>( std::floor(rect.y() * y_scale))); DCHECK(base::IsValueInRangeForNumericType<int>( std::ceil(rect.right() * x_scale))); DCHECK(base::IsValueInRangeForNumericType<int>( std::ceil(rect.bottom() * y_scale))); int x = static_cast<int>(std::floor(rect.x() * x_scale)); int y = static_cast<int>(std::floor(rect.y() * y_scale)); int r = rect.width() == 0 ? x : static_cast<int>(std::ceil(rect.right() * x_scale)); int b = rect.height() == 0 ? y : static_cast<int>(std::ceil(rect.bottom() * y_scale)); return Rect(x, y, r - x, b - y); } inline Rect ScaleToEnclosingRect(const Rect& rect, float scale) { return ScaleToEnclosingRect(rect, scale, scale); } // ScaleToEnclosingRect but clamping instead of asserting if the resulting rect // would overflow. inline Rect ScaleToEnclosingRectSafe(const Rect& rect, float x_scale, float y_scale) { if (x_scale == 1.f && y_scale == 1.f) return rect; int x = base::saturated_cast<int>(std::floor(rect.x() * x_scale)); int y = base::saturated_cast<int>(std::floor(rect.y() * y_scale)); int w = base::saturated_cast<int>(std::ceil(rect.width() * x_scale)); int h = base::saturated_cast<int>(std::ceil(rect.height() * y_scale)); return Rect(x, y, w, h); } inline Rect ScaleToEnclosingRectSafe(const Rect& rect, float scale) { return ScaleToEnclosingRectSafe(rect, scale, scale); } inline Rect ScaleToEnclosedRect(const Rect& rect, float x_scale, float y_scale) { if (x_scale == 1.f && y_scale == 1.f) return rect; DCHECK(base::IsValueInRangeForNumericType<int>( std::ceil(rect.x() * x_scale))); DCHECK(base::IsValueInRangeForNumericType<int>( std::ceil(rect.y() * y_scale))); DCHECK(base::IsValueInRangeForNumericType<int>( std::floor(rect.right() * x_scale))); DCHECK(base::IsValueInRangeForNumericType<int>( std::floor(rect.bottom() * y_scale))); int x = static_cast<int>(std::ceil(rect.x() * x_scale)); int y = static_cast<int>(std::ceil(rect.y() * y_scale)); int r = rect.width() == 0 ? x : static_cast<int>(std::floor(rect.right() * x_scale)); int b = rect.height() == 0 ? y : static_cast<int>(std::floor(rect.bottom() * y_scale)); return Rect(x, y, r - x, b - y); } inline Rect ScaleToEnclosedRect(const Rect& rect, float scale) { return ScaleToEnclosedRect(rect, scale, scale); } // Scales |rect| by scaling its four corner points. If the corner points lie on // non-integral coordinate after scaling, their values are rounded to the // nearest integer. // This is helpful during layout when relative positions of multiple gfx::Rect // in a given coordinate space needs to be same after scaling as it was before // scaling. ie. this gives a lossless relative positioning of rects. inline Rect ScaleToRoundedRect(const Rect& rect, float x_scale, float y_scale) { if (x_scale == 1.f && y_scale == 1.f) return rect; DCHECK( base::IsValueInRangeForNumericType<int>(std::round(rect.x() * x_scale))); DCHECK( base::IsValueInRangeForNumericType<int>(std::round(rect.y() * y_scale))); DCHECK(base::IsValueInRangeForNumericType<int>( std::round(rect.right() * x_scale))); DCHECK(base::IsValueInRangeForNumericType<int>( std::round(rect.bottom() * y_scale))); int x = static_cast<int>(std::round(rect.x() * x_scale)); int y = static_cast<int>(std::round(rect.y() * y_scale)); int r = rect.width() == 0 ? x : static_cast<int>(std::round(rect.right() * x_scale)); int b = rect.height() == 0 ? y : static_cast<int>(std::round(rect.bottom() * y_scale)); return Rect(x, y, r - x, b - y); } inline Rect ScaleToRoundedRect(const Rect& rect, float scale) { return ScaleToRoundedRect(rect, scale, scale); } // This is declared here for use in gtest-based unit tests but is defined in // the //ui/gfx:test_support target. Depend on that to use this in your unit // test. This should not be used in production code - call ToString() instead. void PrintTo(const Rect& rect, ::std::ostream* os); } // namespace gfx #endif // UI_GFX_GEOMETRY_RECT_H_