// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Time represents an absolute point in coordinated universal time (UTC), // internally represented as microseconds (s/1,000,000) since the Windows epoch // (1601-01-01 00:00:00 UTC). System-dependent clock interface routines are // defined in time_PLATFORM.cc. Note that values for Time may skew and jump // around as the operating system makes adjustments to synchronize (e.g., with // NTP servers). Thus, client code that uses the Time class must account for // this. // // TimeDelta represents a duration of time, internally represented in // microseconds. // // TimeTicks and ThreadTicks represent an abstract time that is most of the time // incrementing, for use in measuring time durations. Internally, they are // represented in microseconds. They cannot be converted to a human-readable // time, but are guaranteed not to decrease (unlike the Time class). Note that // TimeTicks may "stand still" (e.g., if the computer is suspended), and // ThreadTicks will "stand still" whenever the thread has been de-scheduled by // the operating system. // // All time classes are copyable, assignable, and occupy 64-bits per instance. // As a result, prefer passing them by value: // void MyFunction(TimeDelta arg); // If circumstances require, you may also pass by const reference: // void MyFunction(const TimeDelta& arg); // Not preferred. // // Definitions of operator<< are provided to make these types work with // DCHECK_EQ() and other log macros. For human-readable formatting, see // "base/i18n/time_formatting.h". // // So many choices! Which time class should you use? Examples: // // Time: Interpreting the wall-clock time provided by a remote system. // Detecting whether cached resources have expired. Providing the // user with a display of the current date and time. Determining // the amount of time between events across re-boots of the // machine. // // TimeTicks: Tracking the amount of time a task runs. Executing delayed // tasks at the right time. Computing presentation timestamps. // Synchronizing audio and video using TimeTicks as a common // reference clock (lip-sync). Measuring network round-trip // latency. // // ThreadTicks: Benchmarking how long the current thread has been doing actual // work. #ifndef BASE_TIME_TIME_H_ #define BASE_TIME_TIME_H_ #include <stdint.h> #include <time.h> #include <iosfwd> #include <limits> #include "base/base_export.h" #include "base/compiler_specific.h" #include "base/logging.h" #include "base/numerics/safe_math.h" #include "build/build_config.h" #if defined(OS_FUCHSIA) #include <zircon/types.h> #endif #if defined(OS_MACOSX) #include <CoreFoundation/CoreFoundation.h> // Avoid Mac system header macro leak. #undef TYPE_BOOL #endif #if defined(OS_ANDROID) #include <jni.h> #endif #if defined(OS_POSIX) || defined(OS_FUCHSIA) #include <unistd.h> #include <sys/time.h> #endif #if defined(OS_WIN) #include "base/gtest_prod_util.h" #include "base/win/windows_types.h" #endif namespace base { class PlatformThreadHandle; class TimeDelta; // The functions in the time_internal namespace are meant to be used only by the // time classes and functions. Please use the math operators defined in the // time classes instead. namespace time_internal { // Add or subtract |value| from a TimeDelta. The int64_t argument and return // value are in terms of a microsecond timebase. BASE_EXPORT int64_t SaturatedAdd(TimeDelta delta, int64_t value); BASE_EXPORT int64_t SaturatedSub(TimeDelta delta, int64_t value); } // namespace time_internal // TimeDelta ------------------------------------------------------------------ class BASE_EXPORT TimeDelta { public: constexpr TimeDelta() : delta_(0) {} // Converts units of time to TimeDeltas. static constexpr TimeDelta FromDays(int days); static constexpr TimeDelta FromHours(int hours); static constexpr TimeDelta FromMinutes(int minutes); static constexpr TimeDelta FromSeconds(int64_t secs); static constexpr TimeDelta FromMilliseconds(int64_t ms); static constexpr TimeDelta FromMicroseconds(int64_t us); static constexpr TimeDelta FromNanoseconds(int64_t ns); static constexpr TimeDelta FromSecondsD(double secs); static constexpr TimeDelta FromMillisecondsD(double ms); static constexpr TimeDelta FromMicrosecondsD(double us); static constexpr TimeDelta FromNanosecondsD(double ns); #if defined(OS_WIN) static TimeDelta FromQPCValue(LONGLONG qpc_value); static TimeDelta FromFileTime(FILETIME ft); #elif defined(OS_POSIX) || defined(OS_FUCHSIA) static TimeDelta FromTimeSpec(const timespec& ts); #endif // Converts an integer value representing TimeDelta to a class. This is used // when deserializing a |TimeDelta| structure, using a value known to be // compatible. It is not provided as a constructor because the integer type // may be unclear from the perspective of a caller. // // DEPRECATED - Do not use in new code. http://crbug.com/634507 static constexpr TimeDelta FromInternalValue(int64_t delta) { return TimeDelta(delta); } // Returns the maximum time delta, which should be greater than any reasonable // time delta we might compare it to. Adding or subtracting the maximum time // delta to a time or another time delta has an undefined result. static constexpr TimeDelta Max(); // Returns the minimum time delta, which should be less than than any // reasonable time delta we might compare it to. Adding or subtracting the // minimum time delta to a time or another time delta has an undefined result. static constexpr TimeDelta Min(); // Returns the internal numeric value of the TimeDelta object. Please don't // use this and do arithmetic on it, as it is more error prone than using the // provided operators. // For serializing, use FromInternalValue to reconstitute. // // DEPRECATED - Do not use in new code. http://crbug.com/634507 constexpr int64_t ToInternalValue() const { return delta_; } // Returns the magnitude (absolute value) of this TimeDelta. constexpr TimeDelta magnitude() const { // Some toolchains provide an incomplete C++11 implementation and lack an // int64_t overload for std::abs(). The following is a simple branchless // implementation: const int64_t mask = delta_ >> (sizeof(delta_) * 8 - 1); return TimeDelta((delta_ + mask) ^ mask); } // Returns true if the time delta is zero. constexpr bool is_zero() const { return delta_ == 0; } // Returns true if the time delta is the maximum/minimum time delta. constexpr bool is_max() const { return delta_ == std::numeric_limits<int64_t>::max(); } constexpr bool is_min() const { return delta_ == std::numeric_limits<int64_t>::min(); } #if defined(OS_POSIX) || defined(OS_FUCHSIA) struct timespec ToTimeSpec() const; #endif // Returns the time delta in some unit. The InXYZF versions return a floating // point value. The InXYZ versions return a truncated value (aka rounded // towards zero, std::trunc() behavior). The InXYZFloored() versions round to // lesser integers (std::floor() behavior). The XYZRoundedUp() versions round // up to greater integers (std::ceil() behavior). int InDays() const; int InDaysFloored() const; int InHours() const; int InMinutes() const; double InSecondsF() const; int64_t InSeconds() const; double InMillisecondsF() const; int64_t InMilliseconds() const; int64_t InMillisecondsRoundedUp() const; int64_t InMicroseconds() const; double InMicrosecondsF() const; int64_t InNanoseconds() const; constexpr TimeDelta& operator=(TimeDelta other) { delta_ = other.delta_; return *this; } // Computations with other deltas. Can easily be made constexpr with C++17 but // hard to do until then per limitations around // __builtin_(add|sub)_overflow in safe_math_clang_gcc_impl.h : // https://chromium-review.googlesource.com/c/chromium/src/+/873352#message-59594ab70827795a67e0780404adf37b4b6c2f14 TimeDelta operator+(TimeDelta other) const { return TimeDelta(time_internal::SaturatedAdd(*this, other.delta_)); } TimeDelta operator-(TimeDelta other) const { return TimeDelta(time_internal::SaturatedSub(*this, other.delta_)); } TimeDelta& operator+=(TimeDelta other) { return *this = (*this + other); } TimeDelta& operator-=(TimeDelta other) { return *this = (*this - other); } constexpr TimeDelta operator-() const { return TimeDelta(-delta_); } // Computations with numeric types. operator*() isn't constexpr because of a // limitation around __builtin_mul_overflow (but operator/(1.0/a) works for // |a|'s of "reasonable" size -- i.e. that don't risk overflow). template <typename T> TimeDelta operator*(T a) const { CheckedNumeric<int64_t> rv(delta_); rv *= a; if (rv.IsValid()) return TimeDelta(rv.ValueOrDie()); // Matched sign overflows. Mismatched sign underflows. if ((delta_ < 0) ^ (a < 0)) return TimeDelta(std::numeric_limits<int64_t>::min()); return TimeDelta(std::numeric_limits<int64_t>::max()); } template <typename T> constexpr TimeDelta operator/(T a) const { CheckedNumeric<int64_t> rv(delta_); rv /= a; if (rv.IsValid()) return TimeDelta(rv.ValueOrDie()); // Matched sign overflows. Mismatched sign underflows. // Special case to catch divide by zero. if ((delta_ < 0) ^ (a <= 0)) return TimeDelta(std::numeric_limits<int64_t>::min()); return TimeDelta(std::numeric_limits<int64_t>::max()); } template <typename T> TimeDelta& operator*=(T a) { return *this = (*this * a); } template <typename T> constexpr TimeDelta& operator/=(T a) { return *this = (*this / a); } constexpr int64_t operator/(TimeDelta a) const { return delta_ / a.delta_; } constexpr TimeDelta operator%(TimeDelta a) const { return TimeDelta(delta_ % a.delta_); } // Comparison operators. constexpr bool operator==(TimeDelta other) const { return delta_ == other.delta_; } constexpr bool operator!=(TimeDelta other) const { return delta_ != other.delta_; } constexpr bool operator<(TimeDelta other) const { return delta_ < other.delta_; } constexpr bool operator<=(TimeDelta other) const { return delta_ <= other.delta_; } constexpr bool operator>(TimeDelta other) const { return delta_ > other.delta_; } constexpr bool operator>=(TimeDelta other) const { return delta_ >= other.delta_; } #if defined(OS_WIN) // This works around crbug.com/635974 constexpr TimeDelta(const TimeDelta& other) : delta_(other.delta_) {} #endif private: friend int64_t time_internal::SaturatedAdd(TimeDelta delta, int64_t value); friend int64_t time_internal::SaturatedSub(TimeDelta delta, int64_t value); // Constructs a delta given the duration in microseconds. This is private // to avoid confusion by callers with an integer constructor. Use // FromSeconds, FromMilliseconds, etc. instead. constexpr explicit TimeDelta(int64_t delta_us) : delta_(delta_us) {} // Private method to build a delta from a double. static constexpr TimeDelta FromDouble(double value); // Private method to build a delta from the product of a user-provided value // and a known-positive value. static constexpr TimeDelta FromProduct(int64_t value, int64_t positive_value); // Delta in microseconds. int64_t delta_; }; template <typename T> TimeDelta operator*(T a, TimeDelta td) { return td * a; } // For logging use only. BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeDelta time_delta); // Do not reference the time_internal::TimeBase template class directly. Please // use one of the time subclasses instead, and only reference the public // TimeBase members via those classes. namespace time_internal { // TimeBase-------------------------------------------------------------------- // Provides value storage and comparison/math operations common to all time // classes. Each subclass provides for strong type-checking to ensure // semantically meaningful comparison/math of time values from the same clock // source or timeline. template<class TimeClass> class TimeBase { public: static const int64_t kHoursPerDay = 24; static const int64_t kMillisecondsPerSecond = 1000; static const int64_t kMillisecondsPerDay = kMillisecondsPerSecond * 60 * 60 * kHoursPerDay; static const int64_t kMicrosecondsPerMillisecond = 1000; static const int64_t kMicrosecondsPerSecond = kMicrosecondsPerMillisecond * kMillisecondsPerSecond; static const int64_t kMicrosecondsPerMinute = kMicrosecondsPerSecond * 60; static const int64_t kMicrosecondsPerHour = kMicrosecondsPerMinute * 60; static const int64_t kMicrosecondsPerDay = kMicrosecondsPerHour * kHoursPerDay; static const int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7; static const int64_t kNanosecondsPerMicrosecond = 1000; static const int64_t kNanosecondsPerSecond = kNanosecondsPerMicrosecond * kMicrosecondsPerSecond; // Returns true if this object has not been initialized. // // Warning: Be careful when writing code that performs math on time values, // since it's possible to produce a valid "zero" result that should not be // interpreted as a "null" value. bool is_null() const { return us_ == 0; } // Returns true if this object represents the maximum/minimum time. bool is_max() const { return us_ == std::numeric_limits<int64_t>::max(); } bool is_min() const { return us_ == std::numeric_limits<int64_t>::min(); } // Returns the maximum/minimum times, which should be greater/less than than // any reasonable time with which we might compare it. static TimeClass Max() { return TimeClass(std::numeric_limits<int64_t>::max()); } static TimeClass Min() { return TimeClass(std::numeric_limits<int64_t>::min()); } // For serializing only. Use FromInternalValue() to reconstitute. Please don't // use this and do arithmetic on it, as it is more error prone than using the // provided operators. // // DEPRECATED - Do not use in new code. For serializing Time values, prefer // Time::ToDeltaSinceWindowsEpoch().InMicroseconds(). http://crbug.com/634507 int64_t ToInternalValue() const { return us_; } // The amount of time since the origin (or "zero") point. This is a syntactic // convenience to aid in code readability, mainly for debugging/testing use // cases. // // Warning: While the Time subclass has a fixed origin point, the origin for // the other subclasses can vary each time the application is restarted. TimeDelta since_origin() const { return TimeDelta::FromMicroseconds(us_); } TimeClass& operator=(TimeClass other) { us_ = other.us_; return *(static_cast<TimeClass*>(this)); } // Compute the difference between two times. TimeDelta operator-(TimeClass other) const { return TimeDelta::FromMicroseconds(us_ - other.us_); } // Return a new time modified by some delta. TimeClass operator+(TimeDelta delta) const { return TimeClass(time_internal::SaturatedAdd(delta, us_)); } TimeClass operator-(TimeDelta delta) const { return TimeClass(-time_internal::SaturatedSub(delta, us_)); } // Modify by some time delta. TimeClass& operator+=(TimeDelta delta) { return static_cast<TimeClass&>(*this = (*this + delta)); } TimeClass& operator-=(TimeDelta delta) { return static_cast<TimeClass&>(*this = (*this - delta)); } // Comparison operators bool operator==(TimeClass other) const { return us_ == other.us_; } bool operator!=(TimeClass other) const { return us_ != other.us_; } bool operator<(TimeClass other) const { return us_ < other.us_; } bool operator<=(TimeClass other) const { return us_ <= other.us_; } bool operator>(TimeClass other) const { return us_ > other.us_; } bool operator>=(TimeClass other) const { return us_ >= other.us_; } protected: constexpr explicit TimeBase(int64_t us) : us_(us) {} // Time value in a microsecond timebase. int64_t us_; }; } // namespace time_internal template<class TimeClass> inline TimeClass operator+(TimeDelta delta, TimeClass t) { return t + delta; } // Time ----------------------------------------------------------------------- // Represents a wall clock time in UTC. Values are not guaranteed to be // monotonically non-decreasing and are subject to large amounts of skew. class BASE_EXPORT Time : public time_internal::TimeBase<Time> { public: // Offset of UNIX epoch (1970-01-01 00:00:00 UTC) from Windows FILETIME epoch // (1601-01-01 00:00:00 UTC), in microseconds. This value is derived from the // following: ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the number // of leap year days between 1601 and 1970: (1970-1601)/4 excluding 1700, // 1800, and 1900. static constexpr int64_t kTimeTToMicrosecondsOffset = INT64_C(11644473600000000); #if defined(OS_WIN) // To avoid overflow in QPC to Microseconds calculations, since we multiply // by kMicrosecondsPerSecond, then the QPC value should not exceed // (2^63 - 1) / 1E6. If it exceeds that threshold, we divide then multiply. static constexpr int64_t kQPCOverflowThreshold = INT64_C(0x8637BD05AF7); #endif // kExplodedMinYear and kExplodedMaxYear define the platform-specific limits // for values passed to FromUTCExploded() and FromLocalExploded(). Those // functions will return false if passed values outside these limits. The limits // are inclusive, meaning that the API should support all dates within a given // limit year. #if defined(OS_WIN) static constexpr int kExplodedMinYear = 1601; static constexpr int kExplodedMaxYear = 30827; #elif defined(OS_IOS) static constexpr int kExplodedMinYear = std::numeric_limits<int>::min(); static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max(); #elif defined(OS_MACOSX) static constexpr int kExplodedMinYear = 1902; static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max(); #elif defined(OS_ANDROID) // Though we use 64-bit time APIs on both 32 and 64 bit Android, some OS // versions like KitKat (ARM but not x86 emulator) can't handle some early // dates (e.g. before 1170). So we set min conservatively here. static constexpr int kExplodedMinYear = 1902; static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max(); #else static constexpr int kExplodedMinYear = (sizeof(time_t) == 4 ? 1902 : std::numeric_limits<int>::min()); static constexpr int kExplodedMaxYear = (sizeof(time_t) == 4 ? 2037 : std::numeric_limits<int>::max()); #endif // Represents an exploded time that can be formatted nicely. This is kind of // like the Win32 SYSTEMTIME structure or the Unix "struct tm" with a few // additions and changes to prevent errors. struct BASE_EXPORT Exploded { int year; // Four digit year "2007" int month; // 1-based month (values 1 = January, etc.) int day_of_week; // 0-based day of week (0 = Sunday, etc.) int day_of_month; // 1-based day of month (1-31) int hour; // Hour within the current day (0-23) int minute; // Minute within the current hour (0-59) int second; // Second within the current minute (0-59 plus leap // seconds which may take it up to 60). int millisecond; // Milliseconds within the current second (0-999) // A cursory test for whether the data members are within their // respective ranges. A 'true' return value does not guarantee the // Exploded value can be successfully converted to a Time value. bool HasValidValues() const; }; // Contains the NULL time. Use Time::Now() to get the current time. constexpr Time() : TimeBase(0) {} // Returns the time for epoch in Unix-like system (Jan 1, 1970). static Time UnixEpoch(); // Returns the current time. Watch out, the system might adjust its clock // in which case time will actually go backwards. We don't guarantee that // times are increasing, or that two calls to Now() won't be the same. static Time Now(); // Returns the current time. Same as Now() except that this function always // uses system time so that there are no discrepancies between the returned // time and system time even on virtual environments including our test bot. // For timing sensitive unittests, this function should be used. static Time NowFromSystemTime(); // Converts to/from TimeDeltas relative to the Windows epoch (1601-01-01 // 00:00:00 UTC). Prefer these methods for opaque serialization and // deserialization of time values, e.g. // // // Serialization: // base::Time last_updated = ...; // SaveToDatabase(last_updated.ToDeltaSinceWindowsEpoch().InMicroseconds()); // // // Deserialization: // base::Time last_updated = base::Time::FromDeltaSinceWindowsEpoch( // base::TimeDelta::FromMicroseconds(LoadFromDatabase())); static Time FromDeltaSinceWindowsEpoch(TimeDelta delta); TimeDelta ToDeltaSinceWindowsEpoch() const; // Converts to/from time_t in UTC and a Time class. static Time FromTimeT(time_t tt); time_t ToTimeT() const; // Converts time to/from a double which is the number of seconds since epoch // (Jan 1, 1970). Webkit uses this format to represent time. // Because WebKit initializes double time value to 0 to indicate "not // initialized", we map it to empty Time object that also means "not // initialized". static Time FromDoubleT(double dt); double ToDoubleT() const; #if defined(OS_POSIX) || defined(OS_FUCHSIA) // Converts the timespec structure to time. MacOS X 10.8.3 (and tentatively, // earlier versions) will have the |ts|'s tv_nsec component zeroed out, // having a 1 second resolution, which agrees with // https://developer.apple.com/legacy/library/#technotes/tn/tn1150.html#HFSPlusDates. static Time FromTimeSpec(const timespec& ts); #endif // Converts to/from the Javascript convention for times, a number of // milliseconds since the epoch: // https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Date/getTime. static Time FromJsTime(double ms_since_epoch); double ToJsTime() const; // Converts to/from Java convention for times, a number of milliseconds since // the epoch. Because the Java format has less resolution, converting to Java // time is a lossy operation. static Time FromJavaTime(int64_t ms_since_epoch); int64_t ToJavaTime() const; #if defined(OS_POSIX) || defined(OS_FUCHSIA) static Time FromTimeVal(struct timeval t); struct timeval ToTimeVal() const; #endif #if defined(OS_MACOSX) static Time FromCFAbsoluteTime(CFAbsoluteTime t); CFAbsoluteTime ToCFAbsoluteTime() const; #endif #if defined(OS_WIN) static Time FromFileTime(FILETIME ft); FILETIME ToFileTime() const; // The minimum time of a low resolution timer. This is basically a windows // constant of ~15.6ms. While it does vary on some older OS versions, we'll // treat it as static across all windows versions. static const int kMinLowResolutionThresholdMs = 16; // Enable or disable Windows high resolution timer. static void EnableHighResolutionTimer(bool enable); // Activates or deactivates the high resolution timer based on the |activate| // flag. If the HighResolutionTimer is not Enabled (see // EnableHighResolutionTimer), this function will return false. Otherwise // returns true. Each successful activate call must be paired with a // subsequent deactivate call. // All callers to activate the high resolution timer must eventually call // this function to deactivate the high resolution timer. static bool ActivateHighResolutionTimer(bool activate); // Returns true if the high resolution timer is both enabled and activated. // This is provided for testing only, and is not tracked in a thread-safe // way. static bool IsHighResolutionTimerInUse(); // The following two functions are used to report the fraction of elapsed time // that the high resolution timer is activated. // ResetHighResolutionTimerUsage() resets the cumulative usage and starts the // measurement interval and GetHighResolutionTimerUsage() returns the // percentage of time since the reset that the high resolution timer was // activated. // ResetHighResolutionTimerUsage() must be called at least once before calling // GetHighResolutionTimerUsage(); otherwise the usage result would be // undefined. static void ResetHighResolutionTimerUsage(); static double GetHighResolutionTimerUsage(); #endif // defined(OS_WIN) // Converts an exploded structure representing either the local time or UTC // into a Time class. Returns false on a failure when, for example, a day of // month is set to 31 on a 28-30 day month. Returns Time(0) on overflow. static bool FromUTCExploded(const Exploded& exploded, Time* time) WARN_UNUSED_RESULT { return FromExploded(false, exploded, time); } static bool FromLocalExploded(const Exploded& exploded, Time* time) WARN_UNUSED_RESULT { return FromExploded(true, exploded, time); } // Converts a string representation of time to a Time object. // An example of a time string which is converted is as below:- // "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified // in the input string, FromString assumes local time and FromUTCString // assumes UTC. A timezone that cannot be parsed (e.g. "UTC" which is not // specified in RFC822) is treated as if the timezone is not specified. // TODO(iyengar) Move the FromString/FromTimeT/ToTimeT/FromFileTime to // a new time converter class. static bool FromString(const char* time_string, Time* parsed_time) WARN_UNUSED_RESULT { return FromStringInternal(time_string, true, parsed_time); } static bool FromUTCString(const char* time_string, Time* parsed_time) WARN_UNUSED_RESULT { return FromStringInternal(time_string, false, parsed_time); } // Fills the given exploded structure with either the local time or UTC from // this time structure (containing UTC). void UTCExplode(Exploded* exploded) const { return Explode(false, exploded); } void LocalExplode(Exploded* exploded) const { return Explode(true, exploded); } // Rounds this time down to the nearest day in local time. It will represent // midnight on that day. Time LocalMidnight() const; // Converts an integer value representing Time to a class. This may be used // when deserializing a |Time| structure, using a value known to be // compatible. It is not provided as a constructor because the integer type // may be unclear from the perspective of a caller. // // DEPRECATED - Do not use in new code. For deserializing Time values, prefer // Time::FromDeltaSinceWindowsEpoch(). http://crbug.com/634507 static constexpr Time FromInternalValue(int64_t us) { return Time(us); } private: friend class time_internal::TimeBase<Time>; constexpr explicit Time(int64_t us) : TimeBase(us) {} // Explodes the given time to either local time |is_local = true| or UTC // |is_local = false|. void Explode(bool is_local, Exploded* exploded) const; // Unexplodes a given time assuming the source is either local time // |is_local = true| or UTC |is_local = false|. Function returns false on // failure and sets |time| to Time(0). Otherwise returns true and sets |time| // to non-exploded time. static bool FromExploded(bool is_local, const Exploded& exploded, Time* time) WARN_UNUSED_RESULT; // Converts a string representation of time to a Time object. // An example of a time string which is converted is as below:- // "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified // in the input string, local time |is_local = true| or // UTC |is_local = false| is assumed. A timezone that cannot be parsed // (e.g. "UTC" which is not specified in RFC822) is treated as if the // timezone is not specified. static bool FromStringInternal(const char* time_string, bool is_local, Time* parsed_time) WARN_UNUSED_RESULT; // Comparison does not consider |day_of_week| when doing the operation. static bool ExplodedMostlyEquals(const Exploded& lhs, const Exploded& rhs) WARN_UNUSED_RESULT; }; // static constexpr TimeDelta TimeDelta::FromDays(int days) { return days == std::numeric_limits<int>::max() ? Max() : TimeDelta(days * Time::kMicrosecondsPerDay); } // static constexpr TimeDelta TimeDelta::FromHours(int hours) { return hours == std::numeric_limits<int>::max() ? Max() : TimeDelta(hours * Time::kMicrosecondsPerHour); } // static constexpr TimeDelta TimeDelta::FromMinutes(int minutes) { return minutes == std::numeric_limits<int>::max() ? Max() : TimeDelta(minutes * Time::kMicrosecondsPerMinute); } // static constexpr TimeDelta TimeDelta::FromSeconds(int64_t secs) { return FromProduct(secs, Time::kMicrosecondsPerSecond); } // static constexpr TimeDelta TimeDelta::FromMilliseconds(int64_t ms) { return FromProduct(ms, Time::kMicrosecondsPerMillisecond); } // static constexpr TimeDelta TimeDelta::FromMicroseconds(int64_t us) { return TimeDelta(us); } // static constexpr TimeDelta TimeDelta::FromNanoseconds(int64_t ns) { return TimeDelta(ns / Time::kNanosecondsPerMicrosecond); } // static constexpr TimeDelta TimeDelta::FromSecondsD(double secs) { return FromDouble(secs * Time::kMicrosecondsPerSecond); } // static constexpr TimeDelta TimeDelta::FromMillisecondsD(double ms) { return FromDouble(ms * Time::kMicrosecondsPerMillisecond); } // static constexpr TimeDelta TimeDelta::FromMicrosecondsD(double us) { return FromDouble(us); } // static constexpr TimeDelta TimeDelta::FromNanosecondsD(double ns) { return FromDouble(ns / Time::kNanosecondsPerMicrosecond); } // static constexpr TimeDelta TimeDelta::Max() { return TimeDelta(std::numeric_limits<int64_t>::max()); } // static constexpr TimeDelta TimeDelta::Min() { return TimeDelta(std::numeric_limits<int64_t>::min()); } // static constexpr TimeDelta TimeDelta::FromDouble(double value) { // TODO(crbug.com/612601): Use saturated_cast<int64_t>(value) once we sort out // the Min() behavior. return value > std::numeric_limits<int64_t>::max() ? Max() : value < std::numeric_limits<int64_t>::min() ? Min() : TimeDelta(static_cast<int64_t>(value)); } // static constexpr TimeDelta TimeDelta::FromProduct(int64_t value, int64_t positive_value) { DCHECK(positive_value > 0); return value > std::numeric_limits<int64_t>::max() / positive_value ? Max() : value < std::numeric_limits<int64_t>::min() / positive_value ? Min() : TimeDelta(value * positive_value); } // For logging use only. BASE_EXPORT std::ostream& operator<<(std::ostream& os, Time time); // TimeTicks ------------------------------------------------------------------ // Represents monotonically non-decreasing clock time. class BASE_EXPORT TimeTicks : public time_internal::TimeBase<TimeTicks> { public: // The underlying clock used to generate new TimeTicks. enum class Clock { FUCHSIA_ZX_CLOCK_MONOTONIC, LINUX_CLOCK_MONOTONIC, IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME, MAC_MACH_ABSOLUTE_TIME, WIN_QPC, WIN_ROLLOVER_PROTECTED_TIME_GET_TIME }; constexpr TimeTicks() : TimeBase(0) {} // Platform-dependent tick count representing "right now." When // IsHighResolution() returns false, the resolution of the clock could be // as coarse as ~15.6ms. Otherwise, the resolution should be no worse than one // microsecond. static TimeTicks Now(); // Returns true if the high resolution clock is working on this system and // Now() will return high resolution values. Note that, on systems where the // high resolution clock works but is deemed inefficient, the low resolution // clock will be used instead. static bool IsHighResolution() WARN_UNUSED_RESULT; // Returns true if TimeTicks is consistent across processes, meaning that // timestamps taken on different processes can be safely compared with one // another. (Note that, even on platforms where this returns true, time values // from different threads that are within one tick of each other must be // considered to have an ambiguous ordering.) static bool IsConsistentAcrossProcesses() WARN_UNUSED_RESULT; #if defined(OS_FUCHSIA) // Converts between TimeTicks and an ZX_CLOCK_MONOTONIC zx_time_t value. static TimeTicks FromZxTime(zx_time_t nanos_since_boot); zx_time_t ToZxTime() const; #endif #if defined(OS_WIN) // Translates an absolute QPC timestamp into a TimeTicks value. The returned // value has the same origin as Now(). Do NOT attempt to use this if // IsHighResolution() returns false. static TimeTicks FromQPCValue(LONGLONG qpc_value); #endif #if defined(OS_MACOSX) && !defined(OS_IOS) static TimeTicks FromMachAbsoluteTime(uint64_t mach_absolute_time); #endif // defined(OS_MACOSX) && !defined(OS_IOS) #if defined(OS_ANDROID) // Converts to TimeTicks the value obtained from SystemClock.uptimeMillis(). // Note: this convertion may be non-monotonic in relation to previously // obtained TimeTicks::Now() values because of the truncation (to // milliseconds) performed by uptimeMillis(). static TimeTicks FromUptimeMillis(jlong uptime_millis_value); #endif // Get an estimate of the TimeTick value at the time of the UnixEpoch. Because // Time and TimeTicks respond differently to user-set time and NTP // adjustments, this number is only an estimate. Nevertheless, this can be // useful when you need to relate the value of TimeTicks to a real time and // date. Note: Upon first invocation, this function takes a snapshot of the // realtime clock to establish a reference point. This function will return // the same value for the duration of the application, but will be different // in future application runs. static TimeTicks UnixEpoch(); // Returns |this| snapped to the next tick, given a |tick_phase| and // repeating |tick_interval| in both directions. |this| may be before, // after, or equal to the |tick_phase|. TimeTicks SnappedToNextTick(TimeTicks tick_phase, TimeDelta tick_interval) const; // Returns an enum indicating the underlying clock being used to generate // TimeTicks timestamps. This function should only be used for debugging and // logging purposes. static Clock GetClock(); // Converts an integer value representing TimeTicks to a class. This may be // used when deserializing a |TimeTicks| structure, using a value known to be // compatible. It is not provided as a constructor because the integer type // may be unclear from the perspective of a caller. // // DEPRECATED - Do not use in new code. For deserializing TimeTicks values, // prefer TimeTicks + TimeDelta(). http://crbug.com/634507 static constexpr TimeTicks FromInternalValue(int64_t us) { return TimeTicks(us); } #if defined(OS_WIN) protected: typedef DWORD (*TickFunctionType)(void); static TickFunctionType SetMockTickFunction(TickFunctionType ticker); #endif private: friend class time_internal::TimeBase<TimeTicks>; // Please use Now() to create a new object. This is for internal use // and testing. constexpr explicit TimeTicks(int64_t us) : TimeBase(us) {} }; // For logging use only. BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks); // ThreadTicks ---------------------------------------------------------------- // Represents a clock, specific to a particular thread, than runs only while the // thread is running. class BASE_EXPORT ThreadTicks : public time_internal::TimeBase<ThreadTicks> { public: ThreadTicks() : TimeBase(0) { } // Returns true if ThreadTicks::Now() is supported on this system. static bool IsSupported() WARN_UNUSED_RESULT { #if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \ (defined(OS_MACOSX) && !defined(OS_IOS)) || defined(OS_ANDROID) || \ defined(OS_FUCHSIA) return true; #elif defined(OS_WIN) return IsSupportedWin(); #else return false; #endif } // Waits until the initialization is completed. Needs to be guarded with a // call to IsSupported(). static void WaitUntilInitialized() { #if defined(OS_WIN) WaitUntilInitializedWin(); #endif } // Returns thread-specific CPU-time on systems that support this feature. // Needs to be guarded with a call to IsSupported(). Use this timer // to (approximately) measure how much time the calling thread spent doing // actual work vs. being de-scheduled. May return bogus results if the thread // migrates to another CPU between two calls. Returns an empty ThreadTicks // object until the initialization is completed. If a clock reading is // absolutely needed, call WaitUntilInitialized() before this method. static ThreadTicks Now(); #if defined(OS_WIN) // Similar to Now() above except this returns thread-specific CPU time for an // arbitrary thread. All comments for Now() method above apply apply to this // method as well. static ThreadTicks GetForThread(const PlatformThreadHandle& thread_handle); #endif // Converts an integer value representing ThreadTicks to a class. This may be // used when deserializing a |ThreadTicks| structure, using a value known to // be compatible. It is not provided as a constructor because the integer type // may be unclear from the perspective of a caller. // // DEPRECATED - Do not use in new code. For deserializing ThreadTicks values, // prefer ThreadTicks + TimeDelta(). http://crbug.com/634507 static constexpr ThreadTicks FromInternalValue(int64_t us) { return ThreadTicks(us); } private: friend class time_internal::TimeBase<ThreadTicks>; // Please use Now() or GetForThread() to create a new object. This is for // internal use and testing. constexpr explicit ThreadTicks(int64_t us) : TimeBase(us) {} #if defined(OS_WIN) FRIEND_TEST_ALL_PREFIXES(TimeTicks, TSCTicksPerSecond); // Returns the frequency of the TSC in ticks per second, or 0 if it hasn't // been measured yet. Needs to be guarded with a call to IsSupported(). // This method is declared here rather than in the anonymous namespace to // allow testing. static double TSCTicksPerSecond(); static bool IsSupportedWin() WARN_UNUSED_RESULT; static void WaitUntilInitializedWin(); #endif }; // For logging use only. BASE_EXPORT std::ostream& operator<<(std::ostream& os, ThreadTicks time_ticks); } // namespace base #endif // BASE_TIME_TIME_H_