// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Histogram is an object that aggregates statistics, and can summarize them in // various forms, including ASCII graphical, HTML, and numerically (as a // vector of numbers corresponding to each of the aggregating buckets). // See header file for details and examples. #include "base/metrics/histogram.h" #include <inttypes.h> #include <limits.h> #include <math.h> #include <algorithm> #include <string> #include <utility> #include "base/compiler_specific.h" #include "base/debug/alias.h" #include "base/logging.h" #include "base/memory/ptr_util.h" #include "base/metrics/dummy_histogram.h" #include "base/metrics/histogram_functions.h" #include "base/metrics/metrics_hashes.h" #include "base/metrics/persistent_histogram_allocator.h" #include "base/metrics/persistent_memory_allocator.h" #include "base/metrics/sample_vector.h" #include "base/metrics/statistics_recorder.h" #include "base/pickle.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "base/synchronization/lock.h" #include "base/values.h" #include "build/build_config.h" namespace base { namespace { bool ReadHistogramArguments(PickleIterator* iter, std::string* histogram_name, int* flags, int* declared_min, int* declared_max, uint32_t* bucket_count, uint32_t* range_checksum) { if (!iter->ReadString(histogram_name) || !iter->ReadInt(flags) || !iter->ReadInt(declared_min) || !iter->ReadInt(declared_max) || !iter->ReadUInt32(bucket_count) || !iter->ReadUInt32(range_checksum)) { DLOG(ERROR) << "Pickle error decoding Histogram: " << *histogram_name; return false; } // Since these fields may have come from an untrusted renderer, do additional // checks above and beyond those in Histogram::Initialize() if (*declared_max <= 0 || *declared_min <= 0 || *declared_max < *declared_min || INT_MAX / sizeof(HistogramBase::Count) <= *bucket_count || *bucket_count < 2) { DLOG(ERROR) << "Values error decoding Histogram: " << histogram_name; return false; } // We use the arguments to find or create the local version of the histogram // in this process, so we need to clear any IPC flag. *flags &= ~HistogramBase::kIPCSerializationSourceFlag; return true; } bool ValidateRangeChecksum(const HistogramBase& histogram, uint32_t range_checksum) { // Normally, |histogram| should have type HISTOGRAM or be inherited from it. // However, if it's expired, it will actually be a DUMMY_HISTOGRAM. // Skip the checks in that case. if (histogram.GetHistogramType() == DUMMY_HISTOGRAM) return true; const Histogram& casted_histogram = static_cast<const Histogram&>(histogram); return casted_histogram.bucket_ranges()->checksum() == range_checksum; } } // namespace typedef HistogramBase::Count Count; typedef HistogramBase::Sample Sample; // static const uint32_t Histogram::kBucketCount_MAX = 16384u; class Histogram::Factory { public: Factory(const std::string& name, HistogramBase::Sample minimum, HistogramBase::Sample maximum, uint32_t bucket_count, int32_t flags) : Factory(name, HISTOGRAM, minimum, maximum, bucket_count, flags) {} virtual ~Factory() = default; // Create histogram based on construction parameters. Caller takes // ownership of the returned object. HistogramBase* Build(); protected: Factory(const std::string& name, HistogramType histogram_type, HistogramBase::Sample minimum, HistogramBase::Sample maximum, uint32_t bucket_count, int32_t flags) : name_(name), histogram_type_(histogram_type), minimum_(minimum), maximum_(maximum), bucket_count_(bucket_count), flags_(flags) {} // Create a BucketRanges structure appropriate for this histogram. virtual BucketRanges* CreateRanges() { BucketRanges* ranges = new BucketRanges(bucket_count_ + 1); Histogram::InitializeBucketRanges(minimum_, maximum_, ranges); return ranges; } // Allocate the correct Histogram object off the heap (in case persistent // memory is not available). virtual std::unique_ptr<HistogramBase> HeapAlloc(const BucketRanges* ranges) { return WrapUnique( new Histogram(GetPermanentName(name_), minimum_, maximum_, ranges)); } // Perform any required datafill on the just-created histogram. If // overridden, be sure to call the "super" version -- this method may not // always remain empty. virtual void FillHistogram(HistogramBase* histogram) {} // These values are protected (instead of private) because they need to // be accessible to methods of sub-classes in order to avoid passing // unnecessary parameters everywhere. const std::string& name_; const HistogramType histogram_type_; HistogramBase::Sample minimum_; HistogramBase::Sample maximum_; uint32_t bucket_count_; int32_t flags_; private: DISALLOW_COPY_AND_ASSIGN(Factory); }; HistogramBase* Histogram::Factory::Build() { HistogramBase* histogram = StatisticsRecorder::FindHistogram(name_); if (!histogram) { // TODO(gayane): |HashMetricName()| is called again in Histogram // constructor. Refactor code to avoid the additional call. bool should_record = StatisticsRecorder::ShouldRecordHistogram(HashMetricName(name_)); if (!should_record) return DummyHistogram::GetInstance(); // To avoid racy destruction at shutdown, the following will be leaked. const BucketRanges* created_ranges = CreateRanges(); const BucketRanges* registered_ranges = StatisticsRecorder::RegisterOrDeleteDuplicateRanges(created_ranges); // In most cases, the bucket-count, minimum, and maximum values are known // when the code is written and so are passed in explicitly. In other // cases (such as with a CustomHistogram), they are calculated dynamically // at run-time. In the latter case, those ctor parameters are zero and // the results extracted from the result of CreateRanges(). if (bucket_count_ == 0) { bucket_count_ = static_cast<uint32_t>(registered_ranges->bucket_count()); minimum_ = registered_ranges->range(1); maximum_ = registered_ranges->range(bucket_count_ - 1); } DCHECK_EQ(minimum_, registered_ranges->range(1)); DCHECK_EQ(maximum_, registered_ranges->range(bucket_count_ - 1)); // Try to create the histogram using a "persistent" allocator. As of // 2016-02-25, the availability of such is controlled by a base::Feature // that is off by default. If the allocator doesn't exist or if // allocating from it fails, code below will allocate the histogram from // the process heap. PersistentHistogramAllocator::Reference histogram_ref = 0; std::unique_ptr<HistogramBase> tentative_histogram; PersistentHistogramAllocator* allocator = GlobalHistogramAllocator::Get(); if (allocator) { tentative_histogram = allocator->AllocateHistogram( histogram_type_, name_, minimum_, maximum_, registered_ranges, flags_, &histogram_ref); } // Handle the case where no persistent allocator is present or the // persistent allocation fails (perhaps because it is full). if (!tentative_histogram) { DCHECK(!histogram_ref); // Should never have been set. DCHECK(!allocator); // Shouldn't have failed. flags_ &= ~HistogramBase::kIsPersistent; tentative_histogram = HeapAlloc(registered_ranges); tentative_histogram->SetFlags(flags_); } FillHistogram(tentative_histogram.get()); // Register this histogram with the StatisticsRecorder. Keep a copy of // the pointer value to tell later whether the locally created histogram // was registered or deleted. The type is "void" because it could point // to released memory after the following line. const void* tentative_histogram_ptr = tentative_histogram.get(); histogram = StatisticsRecorder::RegisterOrDeleteDuplicate( tentative_histogram.release()); // Persistent histograms need some follow-up processing. if (histogram_ref) { allocator->FinalizeHistogram(histogram_ref, histogram == tentative_histogram_ptr); } } if (histogram_type_ != histogram->GetHistogramType() || (bucket_count_ != 0 && !histogram->HasConstructionArguments( minimum_, maximum_, bucket_count_))) { // The construction arguments do not match the existing histogram. This can // come about if an extension updates in the middle of a chrome run and has // changed one of them, or simply by bad code within Chrome itself. A NULL // return would cause Chrome to crash; better to just record it for later // analysis. UmaHistogramSparse("Histogram.MismatchedConstructionArguments", static_cast<Sample>(HashMetricName(name_))); DLOG(ERROR) << "Histogram " << name_ << " has mismatched construction arguments"; return DummyHistogram::GetInstance(); } return histogram; } HistogramBase* Histogram::FactoryGet(const std::string& name, Sample minimum, Sample maximum, uint32_t bucket_count, int32_t flags) { bool valid_arguments = InspectConstructionArguments(name, &minimum, &maximum, &bucket_count); DCHECK(valid_arguments); return Factory(name, minimum, maximum, bucket_count, flags).Build(); } HistogramBase* Histogram::FactoryTimeGet(const std::string& name, TimeDelta minimum, TimeDelta maximum, uint32_t bucket_count, int32_t flags) { return FactoryGet(name, static_cast<Sample>(minimum.InMilliseconds()), static_cast<Sample>(maximum.InMilliseconds()), bucket_count, flags); } HistogramBase* Histogram::FactoryMicrosecondsTimeGet(const std::string& name, TimeDelta minimum, TimeDelta maximum, uint32_t bucket_count, int32_t flags) { return FactoryGet(name, static_cast<Sample>(minimum.InMicroseconds()), static_cast<Sample>(maximum.InMicroseconds()), bucket_count, flags); } HistogramBase* Histogram::FactoryGet(const char* name, Sample minimum, Sample maximum, uint32_t bucket_count, int32_t flags) { return FactoryGet(std::string(name), minimum, maximum, bucket_count, flags); } HistogramBase* Histogram::FactoryTimeGet(const char* name, TimeDelta minimum, TimeDelta maximum, uint32_t bucket_count, int32_t flags) { return FactoryTimeGet(std::string(name), minimum, maximum, bucket_count, flags); } HistogramBase* Histogram::FactoryMicrosecondsTimeGet(const char* name, TimeDelta minimum, TimeDelta maximum, uint32_t bucket_count, int32_t flags) { return FactoryMicrosecondsTimeGet(std::string(name), minimum, maximum, bucket_count, flags); } std::unique_ptr<HistogramBase> Histogram::PersistentCreate( const char* name, Sample minimum, Sample maximum, const BucketRanges* ranges, const DelayedPersistentAllocation& counts, const DelayedPersistentAllocation& logged_counts, HistogramSamples::Metadata* meta, HistogramSamples::Metadata* logged_meta) { return WrapUnique(new Histogram(name, minimum, maximum, ranges, counts, logged_counts, meta, logged_meta)); } // Calculate what range of values are held in each bucket. // We have to be careful that we don't pick a ratio between starting points in // consecutive buckets that is sooo small, that the integer bounds are the same // (effectively making one bucket get no values). We need to avoid: // ranges(i) == ranges(i + 1) // To avoid that, we just do a fine-grained bucket width as far as we need to // until we get a ratio that moves us along at least 2 units at a time. From // that bucket onward we do use the exponential growth of buckets. // // static void Histogram::InitializeBucketRanges(Sample minimum, Sample maximum, BucketRanges* ranges) { double log_max = log(static_cast<double>(maximum)); double log_ratio; double log_next; size_t bucket_index = 1; Sample current = minimum; ranges->set_range(bucket_index, current); size_t bucket_count = ranges->bucket_count(); while (bucket_count > ++bucket_index) { double log_current; log_current = log(static_cast<double>(current)); // Calculate the count'th root of the range. log_ratio = (log_max - log_current) / (bucket_count - bucket_index); // See where the next bucket would start. log_next = log_current + log_ratio; Sample next; next = static_cast<int>(std::round(exp(log_next))); if (next > current) current = next; else ++current; // Just do a narrow bucket, and keep trying. ranges->set_range(bucket_index, current); } ranges->set_range(ranges->bucket_count(), HistogramBase::kSampleType_MAX); ranges->ResetChecksum(); } // static const int Histogram::kCommonRaceBasedCountMismatch = 5; uint32_t Histogram::FindCorruption(const HistogramSamples& samples) const { int inconsistencies = NO_INCONSISTENCIES; Sample previous_range = -1; // Bottom range is always 0. for (uint32_t index = 0; index < bucket_count(); ++index) { int new_range = ranges(index); if (previous_range >= new_range) inconsistencies |= BUCKET_ORDER_ERROR; previous_range = new_range; } if (!bucket_ranges()->HasValidChecksum()) inconsistencies |= RANGE_CHECKSUM_ERROR; int64_t delta64 = samples.redundant_count() - samples.TotalCount(); if (delta64 != 0) { int delta = static_cast<int>(delta64); if (delta != delta64) delta = INT_MAX; // Flag all giant errors as INT_MAX. if (delta > 0) { if (delta > kCommonRaceBasedCountMismatch) inconsistencies |= COUNT_HIGH_ERROR; } else { DCHECK_GT(0, delta); if (-delta > kCommonRaceBasedCountMismatch) inconsistencies |= COUNT_LOW_ERROR; } } return inconsistencies; } const BucketRanges* Histogram::bucket_ranges() const { return unlogged_samples_->bucket_ranges(); } Sample Histogram::declared_min() const { const BucketRanges* ranges = bucket_ranges(); if (ranges->bucket_count() < 2) return -1; return ranges->range(1); } Sample Histogram::declared_max() const { const BucketRanges* ranges = bucket_ranges(); if (ranges->bucket_count() < 2) return -1; return ranges->range(ranges->bucket_count() - 1); } Sample Histogram::ranges(uint32_t i) const { return bucket_ranges()->range(i); } uint32_t Histogram::bucket_count() const { return static_cast<uint32_t>(bucket_ranges()->bucket_count()); } // static bool Histogram::InspectConstructionArguments(StringPiece name, Sample* minimum, Sample* maximum, uint32_t* bucket_count) { // Defensive code for backward compatibility. if (*minimum < 1) { DVLOG(1) << "Histogram: " << name << " has bad minimum: " << *minimum; *minimum = 1; } if (*maximum >= kSampleType_MAX) { DVLOG(1) << "Histogram: " << name << " has bad maximum: " << *maximum; *maximum = kSampleType_MAX - 1; } if (*bucket_count >= kBucketCount_MAX) { DVLOG(1) << "Histogram: " << name << " has bad bucket_count: " << *bucket_count; *bucket_count = kBucketCount_MAX - 1; } bool check_okay = true; if (*minimum > *maximum) { check_okay = false; std::swap(*minimum, *maximum); } if (*maximum == *minimum) { check_okay = false; *maximum = *minimum + 1; } if (*bucket_count < 3) { check_okay = false; *bucket_count = 3; } // Very high bucket counts are wasteful. Use a sparse histogram instead. // Value of 10002 equals a user-supplied value of 10k + 2 overflow buckets. constexpr uint32_t kMaxBucketCount = 10002; if (*bucket_count > kMaxBucketCount) { check_okay = false; *bucket_count = kMaxBucketCount; } if (*bucket_count > static_cast<uint32_t>(*maximum - *minimum + 2)) { check_okay = false; *bucket_count = static_cast<uint32_t>(*maximum - *minimum + 2); } if (!check_okay) { UmaHistogramSparse("Histogram.BadConstructionArguments", static_cast<Sample>(HashMetricName(name))); } return check_okay; } uint64_t Histogram::name_hash() const { return unlogged_samples_->id(); } HistogramType Histogram::GetHistogramType() const { return HISTOGRAM; } bool Histogram::HasConstructionArguments(Sample expected_minimum, Sample expected_maximum, uint32_t expected_bucket_count) const { return (expected_bucket_count == bucket_count() && expected_minimum == declared_min() && expected_maximum == declared_max()); } void Histogram::Add(int value) { AddCount(value, 1); } void Histogram::AddCount(int value, int count) { DCHECK_EQ(0, ranges(0)); DCHECK_EQ(kSampleType_MAX, ranges(bucket_count())); if (value > kSampleType_MAX - 1) value = kSampleType_MAX - 1; if (value < 0) value = 0; if (count <= 0) { NOTREACHED(); return; } unlogged_samples_->Accumulate(value, count); FindAndRunCallback(value); } std::unique_ptr<HistogramSamples> Histogram::SnapshotSamples() const { return SnapshotAllSamples(); } std::unique_ptr<HistogramSamples> Histogram::SnapshotDelta() { #if DCHECK_IS_ON() DCHECK(!final_delta_created_); #endif // The code below has subtle thread-safety guarantees! All changes to // the underlying SampleVectors use atomic integer operations, which guarantee // eventual consistency, but do not guarantee full synchronization between // different entries in the SampleVector. In particular, this means that // concurrent updates to the histogram might result in the reported sum not // matching the individual bucket counts; or there being some buckets that are // logically updated "together", but end up being only partially updated when // a snapshot is captured. Note that this is why it's important to subtract // exactly the snapshotted unlogged samples, rather than simply resetting the // vector: this way, the next snapshot will include any concurrent updates // missed by the current snapshot. std::unique_ptr<HistogramSamples> snapshot = SnapshotUnloggedSamples(); unlogged_samples_->Subtract(*snapshot); logged_samples_->Add(*snapshot); return snapshot; } std::unique_ptr<HistogramSamples> Histogram::SnapshotFinalDelta() const { #if DCHECK_IS_ON() DCHECK(!final_delta_created_); final_delta_created_ = true; #endif return SnapshotUnloggedSamples(); } void Histogram::AddSamples(const HistogramSamples& samples) { unlogged_samples_->Add(samples); } bool Histogram::AddSamplesFromPickle(PickleIterator* iter) { return unlogged_samples_->AddFromPickle(iter); } // The following methods provide a graphical histogram display. void Histogram::WriteHTMLGraph(std::string* output) const { // TBD(jar) Write a nice HTML bar chart, with divs an mouse-overs etc. output->append("<PRE>"); WriteAsciiImpl(true, "<br>", output); output->append("</PRE>"); } void Histogram::WriteAscii(std::string* output) const { WriteAsciiImpl(true, "\n", output); } void Histogram::ValidateHistogramContents() const { CHECK(unlogged_samples_); CHECK(unlogged_samples_->bucket_ranges()); CHECK(logged_samples_); CHECK(logged_samples_->bucket_ranges()); CHECK_NE(0U, logged_samples_->id()); } void Histogram::SerializeInfoImpl(Pickle* pickle) const { DCHECK(bucket_ranges()->HasValidChecksum()); pickle->WriteString(histogram_name()); pickle->WriteInt(flags()); pickle->WriteInt(declared_min()); pickle->WriteInt(declared_max()); pickle->WriteUInt32(bucket_count()); pickle->WriteUInt32(bucket_ranges()->checksum()); } // TODO(bcwhite): Remove minimum/maximum parameters from here and call chain. Histogram::Histogram(const char* name, Sample minimum, Sample maximum, const BucketRanges* ranges) : HistogramBase(name) { DCHECK(ranges) << name << ": " << minimum << "-" << maximum; unlogged_samples_.reset(new SampleVector(HashMetricName(name), ranges)); logged_samples_.reset(new SampleVector(unlogged_samples_->id(), ranges)); } Histogram::Histogram(const char* name, Sample minimum, Sample maximum, const BucketRanges* ranges, const DelayedPersistentAllocation& counts, const DelayedPersistentAllocation& logged_counts, HistogramSamples::Metadata* meta, HistogramSamples::Metadata* logged_meta) : HistogramBase(name) { DCHECK(ranges) << name << ": " << minimum << "-" << maximum; unlogged_samples_.reset( new PersistentSampleVector(HashMetricName(name), ranges, meta, counts)); logged_samples_.reset(new PersistentSampleVector( unlogged_samples_->id(), ranges, logged_meta, logged_counts)); } Histogram::~Histogram() = default; bool Histogram::PrintEmptyBucket(uint32_t index) const { return true; } // Use the actual bucket widths (like a linear histogram) until the widths get // over some transition value, and then use that transition width. Exponentials // get so big so fast (and we don't expect to see a lot of entries in the large // buckets), so we need this to make it possible to see what is going on and // not have 0-graphical-height buckets. double Histogram::GetBucketSize(Count current, uint32_t i) const { DCHECK_GT(ranges(i + 1), ranges(i)); static const double kTransitionWidth = 5; double denominator = ranges(i + 1) - ranges(i); if (denominator > kTransitionWidth) denominator = kTransitionWidth; // Stop trying to normalize. return current/denominator; } const std::string Histogram::GetAsciiBucketRange(uint32_t i) const { return GetSimpleAsciiBucketRange(ranges(i)); } //------------------------------------------------------------------------------ // Private methods // static HistogramBase* Histogram::DeserializeInfoImpl(PickleIterator* iter) { std::string histogram_name; int flags; int declared_min; int declared_max; uint32_t bucket_count; uint32_t range_checksum; if (!ReadHistogramArguments(iter, &histogram_name, &flags, &declared_min, &declared_max, &bucket_count, &range_checksum)) { return nullptr; } // Find or create the local version of the histogram in this process. HistogramBase* histogram = Histogram::FactoryGet( histogram_name, declared_min, declared_max, bucket_count, flags); if (!histogram) return nullptr; // The serialized histogram might be corrupted. if (!ValidateRangeChecksum(*histogram, range_checksum)) return nullptr; return histogram; } std::unique_ptr<SampleVector> Histogram::SnapshotAllSamples() const { std::unique_ptr<SampleVector> samples = SnapshotUnloggedSamples(); samples->Add(*logged_samples_); return samples; } std::unique_ptr<SampleVector> Histogram::SnapshotUnloggedSamples() const { std::unique_ptr<SampleVector> samples( new SampleVector(unlogged_samples_->id(), bucket_ranges())); samples->Add(*unlogged_samples_); return samples; } void Histogram::WriteAsciiImpl(bool graph_it, const std::string& newline, std::string* output) const { // Get local (stack) copies of all effectively volatile class data so that we // are consistent across our output activities. std::unique_ptr<SampleVector> snapshot = SnapshotAllSamples(); Count sample_count = snapshot->TotalCount(); WriteAsciiHeader(*snapshot, sample_count, output); output->append(newline); // Prepare to normalize graphical rendering of bucket contents. double max_size = 0; if (graph_it) max_size = GetPeakBucketSize(*snapshot); // Calculate space needed to print bucket range numbers. Leave room to print // nearly the largest bucket range without sliding over the histogram. uint32_t largest_non_empty_bucket = bucket_count() - 1; while (0 == snapshot->GetCountAtIndex(largest_non_empty_bucket)) { if (0 == largest_non_empty_bucket) break; // All buckets are empty. --largest_non_empty_bucket; } // Calculate largest print width needed for any of our bucket range displays. size_t print_width = 1; for (uint32_t i = 0; i < bucket_count(); ++i) { if (snapshot->GetCountAtIndex(i)) { size_t width = GetAsciiBucketRange(i).size() + 1; if (width > print_width) print_width = width; } } int64_t remaining = sample_count; int64_t past = 0; // Output the actual histogram graph. for (uint32_t i = 0; i < bucket_count(); ++i) { Count current = snapshot->GetCountAtIndex(i); if (!current && !PrintEmptyBucket(i)) continue; remaining -= current; std::string range = GetAsciiBucketRange(i); output->append(range); for (size_t j = 0; range.size() + j < print_width + 1; ++j) output->push_back(' '); if (0 == current && i < bucket_count() - 1 && 0 == snapshot->GetCountAtIndex(i + 1)) { while (i < bucket_count() - 1 && 0 == snapshot->GetCountAtIndex(i + 1)) { ++i; } output->append("... "); output->append(newline); continue; // No reason to plot emptiness. } double current_size = GetBucketSize(current, i); if (graph_it) WriteAsciiBucketGraph(current_size, max_size, output); WriteAsciiBucketContext(past, current, remaining, i, output); output->append(newline); past += current; } DCHECK_EQ(sample_count, past); } double Histogram::GetPeakBucketSize(const SampleVectorBase& samples) const { double max = 0; for (uint32_t i = 0; i < bucket_count() ; ++i) { double current_size = GetBucketSize(samples.GetCountAtIndex(i), i); if (current_size > max) max = current_size; } return max; } void Histogram::WriteAsciiHeader(const SampleVectorBase& samples, Count sample_count, std::string* output) const { StringAppendF(output, "Histogram: %s recorded %d samples", histogram_name(), sample_count); if (sample_count == 0) { DCHECK_EQ(samples.sum(), 0); } else { double mean = static_cast<float>(samples.sum()) / sample_count; StringAppendF(output, ", mean = %.1f", mean); } if (flags()) StringAppendF(output, " (flags = 0x%x)", flags()); } void Histogram::WriteAsciiBucketContext(const int64_t past, const Count current, const int64_t remaining, const uint32_t i, std::string* output) const { double scaled_sum = (past + current + remaining) / 100.0; WriteAsciiBucketValue(current, scaled_sum, output); if (0 < i) { double percentage = past / scaled_sum; StringAppendF(output, " {%3.1f%%}", percentage); } } void Histogram::GetParameters(DictionaryValue* params) const { params->SetString("type", HistogramTypeToString(GetHistogramType())); params->SetInteger("min", declared_min()); params->SetInteger("max", declared_max()); params->SetInteger("bucket_count", static_cast<int>(bucket_count())); } void Histogram::GetCountAndBucketData(Count* count, int64_t* sum, ListValue* buckets) const { std::unique_ptr<SampleVector> snapshot = SnapshotAllSamples(); *count = snapshot->TotalCount(); *sum = snapshot->sum(); uint32_t index = 0; for (uint32_t i = 0; i < bucket_count(); ++i) { Sample count_at_index = snapshot->GetCountAtIndex(i); if (count_at_index > 0) { std::unique_ptr<DictionaryValue> bucket_value(new DictionaryValue()); bucket_value->SetInteger("low", ranges(i)); if (i != bucket_count() - 1) bucket_value->SetInteger("high", ranges(i + 1)); bucket_value->SetInteger("count", count_at_index); buckets->Set(index, std::move(bucket_value)); ++index; } } } //------------------------------------------------------------------------------ // LinearHistogram: This histogram uses a traditional set of evenly spaced // buckets. //------------------------------------------------------------------------------ class LinearHistogram::Factory : public Histogram::Factory { public: Factory(const std::string& name, HistogramBase::Sample minimum, HistogramBase::Sample maximum, uint32_t bucket_count, int32_t flags, const DescriptionPair* descriptions) : Histogram::Factory(name, LINEAR_HISTOGRAM, minimum, maximum, bucket_count, flags) { descriptions_ = descriptions; } ~Factory() override = default; protected: BucketRanges* CreateRanges() override { BucketRanges* ranges = new BucketRanges(bucket_count_ + 1); LinearHistogram::InitializeBucketRanges(minimum_, maximum_, ranges); return ranges; } std::unique_ptr<HistogramBase> HeapAlloc( const BucketRanges* ranges) override { return WrapUnique(new LinearHistogram(GetPermanentName(name_), minimum_, maximum_, ranges)); } void FillHistogram(HistogramBase* base_histogram) override { Histogram::Factory::FillHistogram(base_histogram); // Normally, |base_histogram| should have type LINEAR_HISTOGRAM or be // inherited from it. However, if it's expired, it will actually be a // DUMMY_HISTOGRAM. Skip filling in that case. if (base_histogram->GetHistogramType() == DUMMY_HISTOGRAM) return; LinearHistogram* histogram = static_cast<LinearHistogram*>(base_histogram); // Set range descriptions. if (descriptions_) { for (int i = 0; descriptions_[i].description; ++i) { histogram->bucket_description_[descriptions_[i].sample] = descriptions_[i].description; } } } private: const DescriptionPair* descriptions_; DISALLOW_COPY_AND_ASSIGN(Factory); }; LinearHistogram::~LinearHistogram() = default; HistogramBase* LinearHistogram::FactoryGet(const std::string& name, Sample minimum, Sample maximum, uint32_t bucket_count, int32_t flags) { return FactoryGetWithRangeDescription(name, minimum, maximum, bucket_count, flags, NULL); } HistogramBase* LinearHistogram::FactoryTimeGet(const std::string& name, TimeDelta minimum, TimeDelta maximum, uint32_t bucket_count, int32_t flags) { return FactoryGet(name, static_cast<Sample>(minimum.InMilliseconds()), static_cast<Sample>(maximum.InMilliseconds()), bucket_count, flags); } HistogramBase* LinearHistogram::FactoryGet(const char* name, Sample minimum, Sample maximum, uint32_t bucket_count, int32_t flags) { return FactoryGet(std::string(name), minimum, maximum, bucket_count, flags); } HistogramBase* LinearHistogram::FactoryTimeGet(const char* name, TimeDelta minimum, TimeDelta maximum, uint32_t bucket_count, int32_t flags) { return FactoryTimeGet(std::string(name), minimum, maximum, bucket_count, flags); } std::unique_ptr<HistogramBase> LinearHistogram::PersistentCreate( const char* name, Sample minimum, Sample maximum, const BucketRanges* ranges, const DelayedPersistentAllocation& counts, const DelayedPersistentAllocation& logged_counts, HistogramSamples::Metadata* meta, HistogramSamples::Metadata* logged_meta) { return WrapUnique(new LinearHistogram(name, minimum, maximum, ranges, counts, logged_counts, meta, logged_meta)); } HistogramBase* LinearHistogram::FactoryGetWithRangeDescription( const std::string& name, Sample minimum, Sample maximum, uint32_t bucket_count, int32_t flags, const DescriptionPair descriptions[]) { bool valid_arguments = Histogram::InspectConstructionArguments( name, &minimum, &maximum, &bucket_count); DCHECK(valid_arguments); return Factory(name, minimum, maximum, bucket_count, flags, descriptions) .Build(); } HistogramType LinearHistogram::GetHistogramType() const { return LINEAR_HISTOGRAM; } LinearHistogram::LinearHistogram(const char* name, Sample minimum, Sample maximum, const BucketRanges* ranges) : Histogram(name, minimum, maximum, ranges) {} LinearHistogram::LinearHistogram( const char* name, Sample minimum, Sample maximum, const BucketRanges* ranges, const DelayedPersistentAllocation& counts, const DelayedPersistentAllocation& logged_counts, HistogramSamples::Metadata* meta, HistogramSamples::Metadata* logged_meta) : Histogram(name, minimum, maximum, ranges, counts, logged_counts, meta, logged_meta) {} double LinearHistogram::GetBucketSize(Count current, uint32_t i) const { DCHECK_GT(ranges(i + 1), ranges(i)); // Adjacent buckets with different widths would have "surprisingly" many (few) // samples in a histogram if we didn't normalize this way. double denominator = ranges(i + 1) - ranges(i); return current/denominator; } const std::string LinearHistogram::GetAsciiBucketRange(uint32_t i) const { int range = ranges(i); BucketDescriptionMap::const_iterator it = bucket_description_.find(range); if (it == bucket_description_.end()) return Histogram::GetAsciiBucketRange(i); return it->second; } bool LinearHistogram::PrintEmptyBucket(uint32_t index) const { return bucket_description_.find(ranges(index)) == bucket_description_.end(); } // static void LinearHistogram::InitializeBucketRanges(Sample minimum, Sample maximum, BucketRanges* ranges) { double min = minimum; double max = maximum; size_t bucket_count = ranges->bucket_count(); for (size_t i = 1; i < bucket_count; ++i) { double linear_range = (min * (bucket_count - 1 - i) + max * (i - 1)) / (bucket_count - 2); ranges->set_range(i, static_cast<Sample>(linear_range + 0.5)); } ranges->set_range(ranges->bucket_count(), HistogramBase::kSampleType_MAX); ranges->ResetChecksum(); } // static HistogramBase* LinearHistogram::DeserializeInfoImpl(PickleIterator* iter) { std::string histogram_name; int flags; int declared_min; int declared_max; uint32_t bucket_count; uint32_t range_checksum; if (!ReadHistogramArguments(iter, &histogram_name, &flags, &declared_min, &declared_max, &bucket_count, &range_checksum)) { return nullptr; } HistogramBase* histogram = LinearHistogram::FactoryGet( histogram_name, declared_min, declared_max, bucket_count, flags); if (!histogram) return nullptr; if (!ValidateRangeChecksum(*histogram, range_checksum)) { // The serialized histogram might be corrupted. return nullptr; } return histogram; } //------------------------------------------------------------------------------ // ScaledLinearHistogram: This is a wrapper around a LinearHistogram that // scales input counts. //------------------------------------------------------------------------------ ScaledLinearHistogram::ScaledLinearHistogram(const char* name, Sample minimum, Sample maximum, uint32_t bucket_count, int32_t scale, int32_t flags) : histogram_(static_cast<LinearHistogram*>( LinearHistogram::FactoryGet(name, minimum, maximum, bucket_count, flags))), scale_(scale) { DCHECK(histogram_); DCHECK_LT(1, scale); DCHECK_EQ(1, minimum); CHECK_EQ(static_cast<Sample>(bucket_count), maximum - minimum + 2) << " ScaledLinearHistogram requires buckets of size 1"; remainders_.resize(histogram_->bucket_count(), 0); } ScaledLinearHistogram::~ScaledLinearHistogram() = default; void ScaledLinearHistogram::AddScaledCount(Sample value, int count) { if (count == 0) return; if (count < 0) { NOTREACHED(); return; } const int32_t max_value = static_cast<int32_t>(histogram_->bucket_count() - 1); if (value > max_value) value = max_value; if (value < 0) value = 0; int scaled_count = count / scale_; subtle::Atomic32 remainder = count - scaled_count * scale_; // ScaledLinearHistogram currently requires 1-to-1 mappings between value // and bucket which alleviates the need to do a bucket lookup here (something // that is internal to the HistogramSamples object). if (remainder > 0) { remainder = subtle::NoBarrier_AtomicIncrement(&remainders_[value], remainder); // If remainder passes 1/2 scale, increment main count (thus rounding up). // The remainder is decremented by the full scale, though, which will // cause it to go negative and thus requrire another increase by the full // scale amount before another bump of the scaled count. if (remainder >= scale_ / 2) { scaled_count += 1; subtle::NoBarrier_AtomicIncrement(&remainders_[value], -scale_); } } if (scaled_count > 0) histogram_->AddCount(value, scaled_count); } //------------------------------------------------------------------------------ // This section provides implementation for BooleanHistogram. //------------------------------------------------------------------------------ class BooleanHistogram::Factory : public Histogram::Factory { public: Factory(const std::string& name, int32_t flags) : Histogram::Factory(name, BOOLEAN_HISTOGRAM, 1, 2, 3, flags) {} ~Factory() override = default; protected: BucketRanges* CreateRanges() override { BucketRanges* ranges = new BucketRanges(3 + 1); LinearHistogram::InitializeBucketRanges(1, 2, ranges); return ranges; } std::unique_ptr<HistogramBase> HeapAlloc( const BucketRanges* ranges) override { return WrapUnique(new BooleanHistogram(GetPermanentName(name_), ranges)); } private: DISALLOW_COPY_AND_ASSIGN(Factory); }; HistogramBase* BooleanHistogram::FactoryGet(const std::string& name, int32_t flags) { return Factory(name, flags).Build(); } HistogramBase* BooleanHistogram::FactoryGet(const char* name, int32_t flags) { return FactoryGet(std::string(name), flags); } std::unique_ptr<HistogramBase> BooleanHistogram::PersistentCreate( const char* name, const BucketRanges* ranges, const DelayedPersistentAllocation& counts, const DelayedPersistentAllocation& logged_counts, HistogramSamples::Metadata* meta, HistogramSamples::Metadata* logged_meta) { return WrapUnique(new BooleanHistogram(name, ranges, counts, logged_counts, meta, logged_meta)); } HistogramType BooleanHistogram::GetHistogramType() const { return BOOLEAN_HISTOGRAM; } BooleanHistogram::BooleanHistogram(const char* name, const BucketRanges* ranges) : LinearHistogram(name, 1, 2, ranges) {} BooleanHistogram::BooleanHistogram( const char* name, const BucketRanges* ranges, const DelayedPersistentAllocation& counts, const DelayedPersistentAllocation& logged_counts, HistogramSamples::Metadata* meta, HistogramSamples::Metadata* logged_meta) : LinearHistogram(name, 1, 2, ranges, counts, logged_counts, meta, logged_meta) {} HistogramBase* BooleanHistogram::DeserializeInfoImpl(PickleIterator* iter) { std::string histogram_name; int flags; int declared_min; int declared_max; uint32_t bucket_count; uint32_t range_checksum; if (!ReadHistogramArguments(iter, &histogram_name, &flags, &declared_min, &declared_max, &bucket_count, &range_checksum)) { return nullptr; } HistogramBase* histogram = BooleanHistogram::FactoryGet( histogram_name, flags); if (!histogram) return nullptr; if (!ValidateRangeChecksum(*histogram, range_checksum)) { // The serialized histogram might be corrupted. return nullptr; } return histogram; } //------------------------------------------------------------------------------ // CustomHistogram: //------------------------------------------------------------------------------ class CustomHistogram::Factory : public Histogram::Factory { public: Factory(const std::string& name, const std::vector<Sample>* custom_ranges, int32_t flags) : Histogram::Factory(name, CUSTOM_HISTOGRAM, 0, 0, 0, flags) { custom_ranges_ = custom_ranges; } ~Factory() override = default; protected: BucketRanges* CreateRanges() override { // Remove the duplicates in the custom ranges array. std::vector<int> ranges = *custom_ranges_; ranges.push_back(0); // Ensure we have a zero value. ranges.push_back(HistogramBase::kSampleType_MAX); std::sort(ranges.begin(), ranges.end()); ranges.erase(std::unique(ranges.begin(), ranges.end()), ranges.end()); BucketRanges* bucket_ranges = new BucketRanges(ranges.size()); for (uint32_t i = 0; i < ranges.size(); i++) { bucket_ranges->set_range(i, ranges[i]); } bucket_ranges->ResetChecksum(); return bucket_ranges; } std::unique_ptr<HistogramBase> HeapAlloc( const BucketRanges* ranges) override { return WrapUnique(new CustomHistogram(GetPermanentName(name_), ranges)); } private: const std::vector<Sample>* custom_ranges_; DISALLOW_COPY_AND_ASSIGN(Factory); }; HistogramBase* CustomHistogram::FactoryGet( const std::string& name, const std::vector<Sample>& custom_ranges, int32_t flags) { CHECK(ValidateCustomRanges(custom_ranges)); return Factory(name, &custom_ranges, flags).Build(); } HistogramBase* CustomHistogram::FactoryGet( const char* name, const std::vector<Sample>& custom_ranges, int32_t flags) { return FactoryGet(std::string(name), custom_ranges, flags); } std::unique_ptr<HistogramBase> CustomHistogram::PersistentCreate( const char* name, const BucketRanges* ranges, const DelayedPersistentAllocation& counts, const DelayedPersistentAllocation& logged_counts, HistogramSamples::Metadata* meta, HistogramSamples::Metadata* logged_meta) { return WrapUnique(new CustomHistogram(name, ranges, counts, logged_counts, meta, logged_meta)); } HistogramType CustomHistogram::GetHistogramType() const { return CUSTOM_HISTOGRAM; } // static std::vector<Sample> CustomHistogram::ArrayToCustomEnumRanges( base::span<const Sample> values) { std::vector<Sample> all_values; for (Sample value : values) { all_values.push_back(value); // Ensure that a guard bucket is added. If we end up with duplicate // values, FactoryGet will take care of removing them. all_values.push_back(value + 1); } return all_values; } CustomHistogram::CustomHistogram(const char* name, const BucketRanges* ranges) : Histogram(name, ranges->range(1), ranges->range(ranges->bucket_count() - 1), ranges) {} CustomHistogram::CustomHistogram( const char* name, const BucketRanges* ranges, const DelayedPersistentAllocation& counts, const DelayedPersistentAllocation& logged_counts, HistogramSamples::Metadata* meta, HistogramSamples::Metadata* logged_meta) : Histogram(name, ranges->range(1), ranges->range(ranges->bucket_count() - 1), ranges, counts, logged_counts, meta, logged_meta) {} void CustomHistogram::SerializeInfoImpl(Pickle* pickle) const { Histogram::SerializeInfoImpl(pickle); // Serialize ranges. First and last ranges are alwasy 0 and INT_MAX, so don't // write them. for (uint32_t i = 1; i < bucket_ranges()->bucket_count(); ++i) pickle->WriteInt(bucket_ranges()->range(i)); } double CustomHistogram::GetBucketSize(Count current, uint32_t i) const { // If this is a histogram of enum values, normalizing the bucket count // by the bucket range is not helpful, so just return the bucket count. return current; } // static HistogramBase* CustomHistogram::DeserializeInfoImpl(PickleIterator* iter) { std::string histogram_name; int flags; int declared_min; int declared_max; uint32_t bucket_count; uint32_t range_checksum; if (!ReadHistogramArguments(iter, &histogram_name, &flags, &declared_min, &declared_max, &bucket_count, &range_checksum)) { return nullptr; } // First and last ranges are not serialized. std::vector<Sample> sample_ranges(bucket_count - 1); for (uint32_t i = 0; i < sample_ranges.size(); ++i) { if (!iter->ReadInt(&sample_ranges[i])) return nullptr; } HistogramBase* histogram = CustomHistogram::FactoryGet( histogram_name, sample_ranges, flags); if (!histogram) return nullptr; if (!ValidateRangeChecksum(*histogram, range_checksum)) { // The serialized histogram might be corrupted. return nullptr; } return histogram; } // static bool CustomHistogram::ValidateCustomRanges( const std::vector<Sample>& custom_ranges) { bool has_valid_range = false; for (uint32_t i = 0; i < custom_ranges.size(); i++) { Sample sample = custom_ranges[i]; if (sample < 0 || sample > HistogramBase::kSampleType_MAX - 1) return false; if (sample != 0) has_valid_range = true; } return has_valid_range; } } // namespace base