// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// The original file was copied from sqlite, and was in the public domain.

/*
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.  This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 */

#include "base/md5.h"

#include <stddef.h>

namespace {

struct Context {
  uint32_t buf[4];
  uint32_t bits[2];
  uint8_t in[64];
};

/*
 * Note: this code is harmless on little-endian machines.
 */
void byteReverse(uint8_t* buf, unsigned longs) {
  do {
    uint32_t temp = static_cast<uint32_t>(
        static_cast<unsigned>(buf[3]) << 8 |
        buf[2]) << 16 |
        (static_cast<unsigned>(buf[1]) << 8 | buf[0]);
    *reinterpret_cast<uint32_t*>(buf) = temp;
    buf += 4;
  } while (--longs);
}

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
  (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
void MD5Transform(uint32_t buf[4], const uint32_t in[16]) {
  uint32_t a, b, c, d;

  a = buf[0];
  b = buf[1];
  c = buf[2];
  d = buf[3];

  MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
  MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
  MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
  MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
  MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
  MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
  MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
  MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
  MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
  MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
  MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
  MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
  MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
  MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
  MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
  MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

  MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
  MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
  MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
  MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
  MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
  MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
  MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
  MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
  MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
  MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
  MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
  MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
  MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
  MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
  MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
  MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

  MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
  MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
  MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
  MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
  MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
  MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
  MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
  MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
  MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
  MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
  MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
  MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
  MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
  MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
  MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
  MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

  MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
  MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
  MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
  MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
  MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
  MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
  MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
  MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
  MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
  MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
  MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
  MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
  MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
  MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
  MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
  MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

  buf[0] += a;
  buf[1] += b;
  buf[2] += c;
  buf[3] += d;
}

}  // namespace

namespace base {

/*
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void MD5Init(MD5Context* context) {
  struct Context* ctx = reinterpret_cast<struct Context*>(context);
  ctx->buf[0] = 0x67452301;
  ctx->buf[1] = 0xefcdab89;
  ctx->buf[2] = 0x98badcfe;
  ctx->buf[3] = 0x10325476;
  ctx->bits[0] = 0;
  ctx->bits[1] = 0;
}

/*
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void MD5Update(MD5Context* context, const StringPiece& data) {
  struct Context* ctx = reinterpret_cast<struct Context*>(context);
  const uint8_t* buf = reinterpret_cast<const uint8_t*>(data.data());
  size_t len = data.size();

  /* Update bitcount */

  uint32_t t = ctx->bits[0];
  if ((ctx->bits[0] = t + (static_cast<uint32_t>(len) << 3)) < t)
    ctx->bits[1]++; /* Carry from low to high */
  ctx->bits[1] += static_cast<uint32_t>(len >> 29);

  t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */

  /* Handle any leading odd-sized chunks */

  if (t) {
    uint8_t* p = static_cast<uint8_t*>(ctx->in + t);

    t = 64 - t;
    if (len < t) {
      memcpy(p, buf, len);
      return;
    }
    memcpy(p, buf, t);
    byteReverse(ctx->in, 16);
    MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in));
    buf += t;
    len -= t;
  }

  /* Process data in 64-byte chunks */

  while (len >= 64) {
    memcpy(ctx->in, buf, 64);
    byteReverse(ctx->in, 16);
    MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in));
    buf += 64;
    len -= 64;
  }

  /* Handle any remaining bytes of data. */

  memcpy(ctx->in, buf, len);
}

/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void MD5Final(MD5Digest* digest, MD5Context* context) {
  struct Context* ctx = reinterpret_cast<struct Context*>(context);
  unsigned count;
  uint8_t* p;

  /* Compute number of bytes mod 64 */
  count = (ctx->bits[0] >> 3) & 0x3F;

  /* Set the first char of padding to 0x80.  This is safe since there is
     always at least one byte free */
  p = ctx->in + count;
  *p++ = 0x80;

  /* Bytes of padding needed to make 64 bytes */
  count = 64 - 1 - count;

  /* Pad out to 56 mod 64 */
  if (count < 8) {
    /* Two lots of padding:  Pad the first block to 64 bytes */
    memset(p, 0, count);
    byteReverse(ctx->in, 16);
    MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in));

    /* Now fill the next block with 56 bytes */
    memset(ctx->in, 0, 56);
  } else {
    /* Pad block to 56 bytes */
    memset(p, 0, count - 8);
  }
  byteReverse(ctx->in, 14);

  /* Append length in bits and transform */
  memcpy(&ctx->in[14 * sizeof(ctx->bits[0])], &ctx->bits[0],
         sizeof(ctx->bits[0]));
  memcpy(&ctx->in[15 * sizeof(ctx->bits[1])], &ctx->bits[1],
         sizeof(ctx->bits[1]));

  MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in));
  byteReverse(reinterpret_cast<uint8_t*>(ctx->buf), 4);
  memcpy(digest->a, ctx->buf, 16);
  memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
}

void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context) {
  /* MD5Final mutates the MD5Context*. Make a copy for generating the
     intermediate value. */
  MD5Context context_copy;
  memcpy(&context_copy, context, sizeof(context_copy));
  MD5Final(digest, &context_copy);
}

std::string MD5DigestToBase16(const MD5Digest& digest) {
  static char const zEncode[] = "0123456789abcdef";

  std::string ret;
  ret.resize(32);

  for (int i = 0, j = 0; i < 16; i++, j += 2) {
    uint8_t a = digest.a[i];
    ret[j] = zEncode[(a >> 4) & 0xf];
    ret[j + 1] = zEncode[a & 0xf];
  }
  return ret;
}

void MD5Sum(const void* data, size_t length, MD5Digest* digest) {
  MD5Context ctx;
  MD5Init(&ctx);
  MD5Update(&ctx, StringPiece(reinterpret_cast<const char*>(data), length));
  MD5Final(digest, &ctx);
}

std::string MD5String(const StringPiece& str) {
  MD5Digest digest;
  MD5Sum(str.data(), str.length(), &digest);
  return MD5DigestToBase16(digest);
}

}  // namespace base