// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/hash.h" #include <functional> uint32_t SuperFastHash(const char* data, size_t len) { std::hash<std::string> hash_fn; return hash_fn(std::string(data, len)); } namespace base { uint32_t Hash(const void* data, size_t length) { // Currently our in-memory hash is the same as the persistent hash. The // split between in-memory and persistent hash functions is maintained to // allow the in-memory hash function to be updated in the future. return PersistentHash(data, length); } uint32_t Hash(const std::string& str) { return PersistentHash(str.data(), str.size()); } uint32_t Hash(const string16& str) { return PersistentHash(str.data(), str.size() * sizeof(char16)); } uint32_t PersistentHash(const void* data, size_t length) { // This hash function must not change, since it is designed to be persistable // to disk. if (length > static_cast<size_t>(std::numeric_limits<int>::max())) { NOTREACHED(); return 0; } return ::SuperFastHash(reinterpret_cast<const char*>(data), static_cast<int>(length)); } uint32_t PersistentHash(const std::string& str) { return PersistentHash(str.data(), str.size()); } // Implement hashing for pairs of at-most 32 bit integer values. // When size_t is 32 bits, we turn the 64-bit hash code into 32 bits by using // multiply-add hashing. This algorithm, as described in // Theorem 4.3.3 of the thesis "Über die Komplexität der Multiplikation in // eingeschränkten Branchingprogrammmodellen" by Woelfel, is: // // h32(x32, y32) = (h64(x32, y32) * rand_odd64 + rand16 * 2^16) % 2^64 / 2^32 // // Contact danakj@chromium.org for any questions. size_t HashInts32(uint32_t value1, uint32_t value2) { uint64_t value1_64 = value1; uint64_t hash64 = (value1_64 << 32) | value2; if (sizeof(size_t) >= sizeof(uint64_t)) return static_cast<size_t>(hash64); uint64_t odd_random = 481046412LL << 32 | 1025306955LL; uint32_t shift_random = 10121U << 16; hash64 = hash64 * odd_random + shift_random; size_t high_bits = static_cast<size_t>(hash64 >> (8 * (sizeof(uint64_t) - sizeof(size_t)))); return high_bits; } // Implement hashing for pairs of up-to 64-bit integer values. // We use the compound integer hash method to produce a 64-bit hash code, by // breaking the two 64-bit inputs into 4 32-bit values: // http://opendatastructures.org/versions/edition-0.1d/ods-java/node33.html#SECTION00832000000000000000 // Then we reduce our result to 32 bits if required, similar to above. size_t HashInts64(uint64_t value1, uint64_t value2) { uint32_t short_random1 = 842304669U; uint32_t short_random2 = 619063811U; uint32_t short_random3 = 937041849U; uint32_t short_random4 = 3309708029U; uint32_t value1a = static_cast<uint32_t>(value1 & 0xffffffff); uint32_t value1b = static_cast<uint32_t>((value1 >> 32) & 0xffffffff); uint32_t value2a = static_cast<uint32_t>(value2 & 0xffffffff); uint32_t value2b = static_cast<uint32_t>((value2 >> 32) & 0xffffffff); uint64_t product1 = static_cast<uint64_t>(value1a) * short_random1; uint64_t product2 = static_cast<uint64_t>(value1b) * short_random2; uint64_t product3 = static_cast<uint64_t>(value2a) * short_random3; uint64_t product4 = static_cast<uint64_t>(value2b) * short_random4; uint64_t hash64 = product1 + product2 + product3 + product4; if (sizeof(size_t) >= sizeof(uint64_t)) return static_cast<size_t>(hash64); uint64_t odd_random = 1578233944LL << 32 | 194370989LL; uint32_t shift_random = 20591U << 16; hash64 = hash64 * odd_random + shift_random; size_t high_bits = static_cast<size_t>(hash64 >> (8 * (sizeof(uint64_t) - sizeof(size_t)))); return high_bits; } } // namespace base