// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/debug/stack_trace.h"

#include <string.h>

#include <algorithm>
#include <sstream>

#include "base/logging.h"
#include "base/macros.h"

#if BUILDFLAG(CAN_UNWIND_WITH_FRAME_POINTERS)

#if defined(OS_LINUX) || defined(OS_ANDROID)
#include <pthread.h>
#include "base/process/process_handle.h"
#include "base/threading/platform_thread.h"
#endif

#if defined(OS_MACOSX)
#include <pthread.h>
#endif

#if defined(OS_LINUX) && defined(__GLIBC__)
extern "C" void* __libc_stack_end;
#endif

#endif  // BUILDFLAG(CAN_UNWIND_WITH_FRAME_POINTERS)

namespace base {
namespace debug {

namespace {

#if BUILDFLAG(CAN_UNWIND_WITH_FRAME_POINTERS)

#if defined(__arm__) && defined(__GNUC__) && !defined(__clang__)
// GCC and LLVM generate slightly different frames on ARM, see
// https://llvm.org/bugs/show_bug.cgi?id=18505 - LLVM generates
// x86-compatible frame, while GCC needs adjustment.
constexpr size_t kStackFrameAdjustment = sizeof(uintptr_t);
#else
constexpr size_t kStackFrameAdjustment = 0;
#endif

uintptr_t GetNextStackFrame(uintptr_t fp) {
  return reinterpret_cast<const uintptr_t*>(fp)[0] - kStackFrameAdjustment;
}

uintptr_t GetStackFramePC(uintptr_t fp) {
  return reinterpret_cast<const uintptr_t*>(fp)[1];
}

bool IsStackFrameValid(uintptr_t fp, uintptr_t prev_fp, uintptr_t stack_end) {
  // With the stack growing downwards, older stack frame must be
  // at a greater address that the current one.
  if (fp <= prev_fp) return false;

  // Assume huge stack frames are bogus.
  if (fp - prev_fp > 100000) return false;

  // Check alignment.
  if (fp & (sizeof(uintptr_t) - 1)) return false;

  if (stack_end) {
    // Both fp[0] and fp[1] must be within the stack.
    if (fp > stack_end - 2 * sizeof(uintptr_t)) return false;

    // Additional check to filter out false positives.
    if (GetStackFramePC(fp) < 32768) return false;
  }

  return true;
};

// ScanStackForNextFrame() scans the stack for a valid frame to allow unwinding
// past system libraries. Only supported on Linux where system libraries are
// usually in the middle of the trace:
//
//   TraceStackFramePointers
//   <more frames from Chrome>
//   base::WorkSourceDispatch   <-- unwinding stops (next frame is invalid),
//   g_main_context_dispatch        ScanStackForNextFrame() is called
//   <more frames from glib>
//   g_main_context_iteration
//   base::MessagePumpGlib::Run <-- ScanStackForNextFrame() finds valid frame,
//   base::RunLoop::Run             unwinding resumes
//   <more frames from Chrome>
//   __libc_start_main
//
// For stack scanning to be efficient it's very important for the thread to
// be started by Chrome. In that case we naturally terminate unwinding once
// we reach the origin of the stack (i.e. GetStackEnd()). If the thread is
// not started by Chrome (e.g. Android's main thread), then we end up always
// scanning area at the origin of the stack, wasting time and not finding any
// frames (since Android libraries don't have frame pointers).
//
// ScanStackForNextFrame() returns 0 if it couldn't find a valid frame
// (or if stack scanning is not supported on the current platform).
uintptr_t ScanStackForNextFrame(uintptr_t fp, uintptr_t stack_end) {
#if defined(OS_LINUX)
  // Enough to resume almost all prematurely terminated traces.
  constexpr size_t kMaxStackScanArea = 8192;

  if (!stack_end) {
    // Too dangerous to scan without knowing where the stack ends.
    return 0;
  }

  fp += sizeof(uintptr_t);  // current frame is known to be invalid
  uintptr_t last_fp_to_scan = std::min(fp + kMaxStackScanArea, stack_end) -
                                  sizeof(uintptr_t);
  for (;fp <= last_fp_to_scan; fp += sizeof(uintptr_t)) {
    uintptr_t next_fp = GetNextStackFrame(fp);
    if (IsStackFrameValid(next_fp, fp, stack_end)) {
      // Check two frames deep. Since stack frame is just a pointer to
      // a higher address on the stack, it's relatively easy to find
      // something that looks like one. However two linked frames are
      // far less likely to be bogus.
      uintptr_t next2_fp = GetNextStackFrame(next_fp);
      if (IsStackFrameValid(next2_fp, next_fp, stack_end)) {
        return fp;
      }
    }
  }
#endif  // defined(OS_LINUX)

  return 0;
}

// Links stack frame |fp| to |parent_fp|, so that during stack unwinding
// TraceStackFramePointers() visits |parent_fp| after visiting |fp|.
// Both frame pointers must come from __builtin_frame_address().
// Returns previous stack frame |fp| was linked to.
void* LinkStackFrames(void* fpp, void* parent_fp) {
  uintptr_t fp = reinterpret_cast<uintptr_t>(fpp) - kStackFrameAdjustment;
  void* prev_parent_fp = reinterpret_cast<void**>(fp)[0];
  reinterpret_cast<void**>(fp)[0] = parent_fp;
  return prev_parent_fp;
}

#endif  // BUILDFLAG(CAN_UNWIND_WITH_FRAME_POINTERS)

}  // namespace

#if BUILDFLAG(CAN_UNWIND_WITH_FRAME_POINTERS)
uintptr_t GetStackEnd() {
#if defined(OS_ANDROID)
  // Bionic reads proc/maps on every call to pthread_getattr_np() when called
  // from the main thread. So we need to cache end of stack in that case to get
  // acceptable performance.
  // For all other threads pthread_getattr_np() is fast enough as it just reads
  // values from its pthread_t argument.
  static uintptr_t main_stack_end = 0;

  bool is_main_thread = GetCurrentProcId() == PlatformThread::CurrentId();
  if (is_main_thread && main_stack_end) {
    return main_stack_end;
  }

  uintptr_t stack_begin = 0;
  size_t stack_size = 0;
  pthread_attr_t attributes;
  int error = pthread_getattr_np(pthread_self(), &attributes);
  if (!error) {
    error = pthread_attr_getstack(
        &attributes, reinterpret_cast<void**>(&stack_begin), &stack_size);
    pthread_attr_destroy(&attributes);
  }
  DCHECK(!error);

  uintptr_t stack_end = stack_begin + stack_size;
  if (is_main_thread) {
    main_stack_end = stack_end;
  }
  return stack_end;  // 0 in case of error

#elif defined(OS_LINUX) && defined(__GLIBC__)

  if (GetCurrentProcId() == PlatformThread::CurrentId()) {
    // For the main thread we have a shortcut.
    return reinterpret_cast<uintptr_t>(__libc_stack_end);
  }

// No easy way to get end of the stack for non-main threads,
// see crbug.com/617730.
#elif defined(OS_MACOSX)
  return reinterpret_cast<uintptr_t>(pthread_get_stackaddr_np(pthread_self()));
#endif

  // Don't know how to get end of the stack.
  return 0;
}
#endif  // BUILDFLAG(CAN_UNWIND_WITH_FRAME_POINTERS)

StackTrace::StackTrace() : StackTrace(arraysize(trace_)) {}

StackTrace::StackTrace(const void* const* trace, size_t count) {
  count = std::min(count, arraysize(trace_));
  if (count)
    memcpy(trace_, trace, count * sizeof(trace_[0]));
  count_ = count;
}

const void *const *StackTrace::Addresses(size_t* count) const {
  *count = count_;
  if (count_)
    return trace_;
  return nullptr;
}

std::string StackTrace::ToString() const {
  std::stringstream stream;
#if !defined(__UCLIBC__) && !defined(_AIX)
  OutputToStream(&stream);
#endif
  return stream.str();
}

#if BUILDFLAG(CAN_UNWIND_WITH_FRAME_POINTERS)

size_t TraceStackFramePointers(const void** out_trace,
                               size_t max_depth,
                               size_t skip_initial) {
  // Usage of __builtin_frame_address() enables frame pointers in this
  // function even if they are not enabled globally. So 'fp' will always
  // be valid.
  uintptr_t fp = reinterpret_cast<uintptr_t>(__builtin_frame_address(0)) -
                    kStackFrameAdjustment;

  uintptr_t stack_end = GetStackEnd();

  size_t depth = 0;
  while (depth < max_depth) {
    if (skip_initial != 0) {
      skip_initial--;
    } else {
      out_trace[depth++] = reinterpret_cast<const void*>(GetStackFramePC(fp));
    }

    uintptr_t next_fp = GetNextStackFrame(fp);
    if (IsStackFrameValid(next_fp, fp, stack_end)) {
      fp = next_fp;
      continue;
    }

    next_fp = ScanStackForNextFrame(fp, stack_end);
    if (next_fp) {
      fp = next_fp;
      continue;
    }

    // Failed to find next frame.
    break;
  }

  return depth;
}

ScopedStackFrameLinker::ScopedStackFrameLinker(void* fp, void* parent_fp)
    : fp_(fp),
      parent_fp_(parent_fp),
      original_parent_fp_(LinkStackFrames(fp, parent_fp)) {}

ScopedStackFrameLinker::~ScopedStackFrameLinker() {
  void* previous_parent_fp = LinkStackFrames(fp_, original_parent_fp_);
  CHECK_EQ(parent_fp_, previous_parent_fp)
      << "Stack frame's parent pointer has changed!";
}

#endif  // BUILDFLAG(CAN_UNWIND_WITH_FRAME_POINTERS)

}  // namespace debug
}  // namespace base