// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_BIND_INTERNAL_H_ #define BASE_BIND_INTERNAL_H_ #include <stddef.h> #include <type_traits> #include <utility> #include "base/callback_internal.h" #include "base/compiler_specific.h" #include "base/memory/raw_scoped_refptr_mismatch_checker.h" #include "base/memory/weak_ptr.h" #include "base/template_util.h" #include "build/build_config.h" #if defined(OS_MACOSX) && !HAS_FEATURE(objc_arc) #include "base/mac/scoped_block.h" #endif // See base/callback.h for user documentation. // // // CONCEPTS: // Functor -- A movable type representing something that should be called. // All function pointers and Callback<> are functors even if the // invocation syntax differs. // RunType -- A function type (as opposed to function _pointer_ type) for // a Callback<>::Run(). Usually just a convenience typedef. // (Bound)Args -- A set of types that stores the arguments. // // Types: // ForceVoidReturn<> -- Helper class for translating function signatures to // equivalent forms with a "void" return type. // FunctorTraits<> -- Type traits used to determine the correct RunType and // invocation manner for a Functor. This is where function // signature adapters are applied. // InvokeHelper<> -- Take a Functor + arguments and actully invokes it. // Handle the differing syntaxes needed for WeakPtr<> // support. This is separate from Invoker to avoid creating // multiple version of Invoker<>. // Invoker<> -- Unwraps the curried parameters and executes the Functor. // BindState<> -- Stores the curried parameters, and is the main entry point // into the Bind() system. namespace base { template <typename T> struct IsWeakReceiver; template <typename> struct BindUnwrapTraits; template <typename Functor, typename BoundArgsTuple, typename SFINAE = void> struct CallbackCancellationTraits; namespace internal { template <typename Functor, typename SFINAE = void> struct FunctorTraits; template <typename T> class UnretainedWrapper { public: explicit UnretainedWrapper(T* o) : ptr_(o) {} T* get() const { return ptr_; } private: T* ptr_; }; template <typename T> class ConstRefWrapper { public: explicit ConstRefWrapper(const T& o) : ptr_(&o) {} const T& get() const { return *ptr_; } private: const T* ptr_; }; template <typename T> class RetainedRefWrapper { public: explicit RetainedRefWrapper(T* o) : ptr_(o) {} explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {} T* get() const { return ptr_.get(); } private: scoped_refptr<T> ptr_; }; template <typename T> struct IgnoreResultHelper { explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {} explicit operator bool() const { return !!functor_; } T functor_; }; // An alternate implementation is to avoid the destructive copy, and instead // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to // a class that is essentially a std::unique_ptr<>. // // The current implementation has the benefit though of leaving ParamTraits<> // fully in callback_internal.h as well as avoiding type conversions during // storage. template <typename T> class OwnedWrapper { public: explicit OwnedWrapper(T* o) : ptr_(o) {} ~OwnedWrapper() { delete ptr_; } T* get() const { return ptr_; } OwnedWrapper(OwnedWrapper&& other) { ptr_ = other.ptr_; other.ptr_ = NULL; } private: mutable T* ptr_; }; // PassedWrapper is a copyable adapter for a scoper that ignores const. // // It is needed to get around the fact that Bind() takes a const reference to // all its arguments. Because Bind() takes a const reference to avoid // unnecessary copies, it is incompatible with movable-but-not-copyable // types; doing a destructive "move" of the type into Bind() would violate // the const correctness. // // This conundrum cannot be solved without either C++11 rvalue references or // a O(2^n) blowup of Bind() templates to handle each combination of regular // types and movable-but-not-copyable types. Thus we introduce a wrapper type // that is copyable to transmit the correct type information down into // BindState<>. Ignoring const in this type makes sense because it is only // created when we are explicitly trying to do a destructive move. // // Two notes: // 1) PassedWrapper supports any type that has a move constructor, however // the type will need to be specifically whitelisted in order for it to be // bound to a Callback. We guard this explicitly at the call of Passed() // to make for clear errors. Things not given to Passed() will be forwarded // and stored by value which will not work for general move-only types. // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL" // scoper to a Callback and allow the Callback to execute once. template <typename T> class PassedWrapper { public: explicit PassedWrapper(T&& scoper) : is_valid_(true), scoper_(std::move(scoper)) {} PassedWrapper(PassedWrapper&& other) : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {} T Take() const { CHECK(is_valid_); is_valid_ = false; return std::move(scoper_); } private: mutable bool is_valid_; mutable T scoper_; }; template <typename T> using Unwrapper = BindUnwrapTraits<std::decay_t<T>>; template <typename T> decltype(auto) Unwrap(T&& o) { return Unwrapper<T>::Unwrap(std::forward<T>(o)); } // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a // method. It is used internally by Bind() to select the correct // InvokeHelper that will no-op itself in the event the WeakPtr<> for // the target object is invalidated. // // The first argument should be the type of the object that will be received by // the method. template <bool is_method, typename... Args> struct IsWeakMethod : std::false_type {}; template <typename T, typename... Args> struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {}; // Packs a list of types to hold them in a single type. template <typename... Types> struct TypeList {}; // Used for DropTypeListItem implementation. template <size_t n, typename List> struct DropTypeListItemImpl; // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. template <size_t n, typename T, typename... List> struct DropTypeListItemImpl<n, TypeList<T, List...>> : DropTypeListItemImpl<n - 1, TypeList<List...>> {}; template <typename T, typename... List> struct DropTypeListItemImpl<0, TypeList<T, List...>> { using Type = TypeList<T, List...>; }; template <> struct DropTypeListItemImpl<0, TypeList<>> { using Type = TypeList<>; }; // A type-level function that drops |n| list item from given TypeList. template <size_t n, typename List> using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type; // Used for TakeTypeListItem implementation. template <size_t n, typename List, typename... Accum> struct TakeTypeListItemImpl; // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. template <size_t n, typename T, typename... List, typename... Accum> struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...> : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {}; template <typename T, typename... List, typename... Accum> struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> { using Type = TypeList<Accum...>; }; template <typename... Accum> struct TakeTypeListItemImpl<0, TypeList<>, Accum...> { using Type = TypeList<Accum...>; }; // A type-level function that takes first |n| list item from given TypeList. // E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to // TypeList<A, B, C>. template <size_t n, typename List> using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type; // Used for ConcatTypeLists implementation. template <typename List1, typename List2> struct ConcatTypeListsImpl; template <typename... Types1, typename... Types2> struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> { using Type = TypeList<Types1..., Types2...>; }; // A type-level function that concats two TypeLists. template <typename List1, typename List2> using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type; // Used for MakeFunctionType implementation. template <typename R, typename ArgList> struct MakeFunctionTypeImpl; template <typename R, typename... Args> struct MakeFunctionTypeImpl<R, TypeList<Args...>> { // MSVC 2013 doesn't support Type Alias of function types. // Revisit this after we update it to newer version. typedef R Type(Args...); }; // A type-level function that constructs a function type that has |R| as its // return type and has TypeLists items as its arguments. template <typename R, typename ArgList> using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type; // Used for ExtractArgs and ExtractReturnType. template <typename Signature> struct ExtractArgsImpl; template <typename R, typename... Args> struct ExtractArgsImpl<R(Args...)> { using ReturnType = R; using ArgsList = TypeList<Args...>; }; // A type-level function that extracts function arguments into a TypeList. // E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>. template <typename Signature> using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList; // A type-level function that extracts the return type of a function. // E.g. ExtractReturnType<R(A, B, C)> is evaluated to R. template <typename Signature> using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType; template <typename Callable, typename Signature = decltype(&Callable::operator())> struct ExtractCallableRunTypeImpl; template <typename Callable, typename R, typename... Args> struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...)> { using Type = R(Args...); }; template <typename Callable, typename R, typename... Args> struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) const> { using Type = R(Args...); }; // Evaluated to RunType of the given callable type. // Example: // auto f = [](int, char*) { return 0.1; }; // ExtractCallableRunType<decltype(f)> // is evaluated to // double(int, char*); template <typename Callable> using ExtractCallableRunType = typename ExtractCallableRunTypeImpl<Callable>::Type; // IsCallableObject<Functor> is std::true_type if |Functor| has operator(). // Otherwise, it's std::false_type. // Example: // IsCallableObject<void(*)()>::value is false. // // struct Foo {}; // IsCallableObject<void(Foo::*)()>::value is false. // // int i = 0; // auto f = [i]() {}; // IsCallableObject<decltype(f)>::value is false. template <typename Functor, typename SFINAE = void> struct IsCallableObject : std::false_type {}; template <typename Callable> struct IsCallableObject<Callable, void_t<decltype(&Callable::operator())>> : std::true_type {}; // HasRefCountedTypeAsRawPtr selects true_type when any of the |Args| is a raw // pointer to a RefCounted type. // Implementation note: This non-specialized case handles zero-arity case only. // Non-zero-arity cases should be handled by the specialization below. template <typename... Args> struct HasRefCountedTypeAsRawPtr : std::false_type {}; // Implementation note: Select true_type if the first parameter is a raw pointer // to a RefCounted type. Otherwise, skip the first parameter and check rest of // parameters recursively. template <typename T, typename... Args> struct HasRefCountedTypeAsRawPtr<T, Args...> : std::conditional_t<NeedsScopedRefptrButGetsRawPtr<T>::value, std::true_type, HasRefCountedTypeAsRawPtr<Args...>> {}; // ForceVoidReturn<> // // Set of templates that support forcing the function return type to void. template <typename Sig> struct ForceVoidReturn; template <typename R, typename... Args> struct ForceVoidReturn<R(Args...)> { using RunType = void(Args...); }; // FunctorTraits<> // // See description at top of file. template <typename Functor, typename SFINAE> struct FunctorTraits; // For empty callable types. // This specialization is intended to allow binding captureless lambdas by // base::Bind(), based on the fact that captureless lambdas are empty while // capturing lambdas are not. This also allows any functors as far as it's an // empty class. // Example: // // // Captureless lambdas are allowed. // []() {return 42;}; // // // Capturing lambdas are *not* allowed. // int x; // [x]() {return x;}; // // // Any empty class with operator() is allowed. // struct Foo { // void operator()() const {} // // No non-static member variable and no virtual functions. // }; template <typename Functor> struct FunctorTraits<Functor, std::enable_if_t<IsCallableObject<Functor>::value && std::is_empty<Functor>::value>> { using RunType = ExtractCallableRunType<Functor>; static constexpr bool is_method = false; static constexpr bool is_nullable = false; template <typename RunFunctor, typename... RunArgs> static ExtractReturnType<RunType> Invoke(RunFunctor&& functor, RunArgs&&... args) { return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...); } }; // For functions. template <typename R, typename... Args> struct FunctorTraits<R (*)(Args...)> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename Function, typename... RunArgs> static R Invoke(Function&& function, RunArgs&&... args) { return std::forward<Function>(function)(std::forward<RunArgs>(args)...); } }; #if defined(OS_WIN) && !defined(ARCH_CPU_X86_64) // For functions. template <typename R, typename... Args> struct FunctorTraits<R(__stdcall*)(Args...)> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename... RunArgs> static R Invoke(R(__stdcall* function)(Args...), RunArgs&&... args) { return function(std::forward<RunArgs>(args)...); } }; // For functions. template <typename R, typename... Args> struct FunctorTraits<R(__fastcall*)(Args...)> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename... RunArgs> static R Invoke(R(__fastcall* function)(Args...), RunArgs&&... args) { return function(std::forward<RunArgs>(args)...); } }; #endif // defined(OS_WIN) && !defined(ARCH_CPU_X86_64) #if defined(OS_MACOSX) // Support for Objective-C blocks. There are two implementation depending // on whether Automated Reference Counting (ARC) is enabled. When ARC is // enabled, then the block itself can be bound as the compiler will ensure // its lifetime will be correctly managed. Otherwise, require the block to // be wrapped in a base::mac::ScopedBlock (via base::RetainBlock) that will // correctly manage the block lifetime. // // The two implementation ensure that the One Definition Rule (ODR) is not // broken (it is not possible to write a template base::RetainBlock that would // work correctly both with ARC enabled and disabled). #if HAS_FEATURE(objc_arc) template <typename R, typename... Args> struct FunctorTraits<R (^)(Args...)> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename BlockType, typename... RunArgs> static R Invoke(BlockType&& block, RunArgs&&... args) { // According to LLVM documentation (§ 6.3), "local variables of automatic // storage duration do not have precise lifetime." Use objc_precise_lifetime // to ensure that the Objective-C block is not deallocated until it has // finished executing even if the Callback<> is destroyed during the block // execution. // https://clang.llvm.org/docs/AutomaticReferenceCounting.html#precise-lifetime-semantics __attribute__((objc_precise_lifetime)) R (^scoped_block)(Args...) = block; return scoped_block(std::forward<RunArgs>(args)...); } }; #else // HAS_FEATURE(objc_arc) template <typename R, typename... Args> struct FunctorTraits<base::mac::ScopedBlock<R (^)(Args...)>> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename BlockType, typename... RunArgs> static R Invoke(BlockType&& block, RunArgs&&... args) { // Copy the block to ensure that the Objective-C block is not deallocated // until it has finished executing even if the Callback<> is destroyed // during the block execution. base::mac::ScopedBlock<R (^)(Args...)> scoped_block(block); return scoped_block.get()(std::forward<RunArgs>(args)...); } }; #endif // HAS_FEATURE(objc_arc) #endif // defined(OS_MACOSX) // For methods. template <typename R, typename Receiver, typename... Args> struct FunctorTraits<R (Receiver::*)(Args...)> { using RunType = R(Receiver*, Args...); static constexpr bool is_method = true; static constexpr bool is_nullable = true; template <typename Method, typename ReceiverPtr, typename... RunArgs> static R Invoke(Method method, ReceiverPtr&& receiver_ptr, RunArgs&&... args) { return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...); } }; // For const methods. template <typename R, typename Receiver, typename... Args> struct FunctorTraits<R (Receiver::*)(Args...) const> { using RunType = R(const Receiver*, Args...); static constexpr bool is_method = true; static constexpr bool is_nullable = true; template <typename Method, typename ReceiverPtr, typename... RunArgs> static R Invoke(Method method, ReceiverPtr&& receiver_ptr, RunArgs&&... args) { return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...); } }; #ifdef __cpp_noexcept_function_type // noexcept makes a distinct function type in C++17. // I.e. `void(*)()` and `void(*)() noexcept` are same in pre-C++17, and // different in C++17. template <typename R, typename... Args> struct FunctorTraits<R (*)(Args...) noexcept> : FunctorTraits<R (*)(Args...)> { }; template <typename R, typename Receiver, typename... Args> struct FunctorTraits<R (Receiver::*)(Args...) noexcept> : FunctorTraits<R (Receiver::*)(Args...)> {}; template <typename R, typename Receiver, typename... Args> struct FunctorTraits<R (Receiver::*)(Args...) const noexcept> : FunctorTraits<R (Receiver::*)(Args...) const> {}; #endif // For IgnoreResults. template <typename T> struct FunctorTraits<IgnoreResultHelper<T>> : FunctorTraits<T> { using RunType = typename ForceVoidReturn<typename FunctorTraits<T>::RunType>::RunType; template <typename IgnoreResultType, typename... RunArgs> static void Invoke(IgnoreResultType&& ignore_result_helper, RunArgs&&... args) { FunctorTraits<T>::Invoke( std::forward<IgnoreResultType>(ignore_result_helper).functor_, std::forward<RunArgs>(args)...); } }; // For OnceCallbacks. template <typename R, typename... Args> struct FunctorTraits<OnceCallback<R(Args...)>> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename CallbackType, typename... RunArgs> static R Invoke(CallbackType&& callback, RunArgs&&... args) { DCHECK(!callback.is_null()); return std::forward<CallbackType>(callback).Run( std::forward<RunArgs>(args)...); } }; // For RepeatingCallbacks. template <typename R, typename... Args> struct FunctorTraits<RepeatingCallback<R(Args...)>> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename CallbackType, typename... RunArgs> static R Invoke(CallbackType&& callback, RunArgs&&... args) { DCHECK(!callback.is_null()); return std::forward<CallbackType>(callback).Run( std::forward<RunArgs>(args)...); } }; template <typename Functor> using MakeFunctorTraits = FunctorTraits<std::decay_t<Functor>>; // InvokeHelper<> // // There are 2 logical InvokeHelper<> specializations: normal, WeakCalls. // // The normal type just calls the underlying runnable. // // WeakCalls need special syntax that is applied to the first argument to check // if they should no-op themselves. template <bool is_weak_call, typename ReturnType> struct InvokeHelper; template <typename ReturnType> struct InvokeHelper<false, ReturnType> { template <typename Functor, typename... RunArgs> static inline ReturnType MakeItSo(Functor&& functor, RunArgs&&... args) { using Traits = MakeFunctorTraits<Functor>; return Traits::Invoke(std::forward<Functor>(functor), std::forward<RunArgs>(args)...); } }; template <typename ReturnType> struct InvokeHelper<true, ReturnType> { // WeakCalls are only supported for functions with a void return type. // Otherwise, the function result would be undefined if the the WeakPtr<> // is invalidated. static_assert(std::is_void<ReturnType>::value, "weak_ptrs can only bind to methods without return values"); template <typename Functor, typename BoundWeakPtr, typename... RunArgs> static inline void MakeItSo(Functor&& functor, BoundWeakPtr&& weak_ptr, RunArgs&&... args) { if (!weak_ptr) return; using Traits = MakeFunctorTraits<Functor>; Traits::Invoke(std::forward<Functor>(functor), std::forward<BoundWeakPtr>(weak_ptr), std::forward<RunArgs>(args)...); } }; // Invoker<> // // See description at the top of the file. template <typename StorageType, typename UnboundRunType> struct Invoker; template <typename StorageType, typename R, typename... UnboundArgs> struct Invoker<StorageType, R(UnboundArgs...)> { static R RunOnce(BindStateBase* base, PassingType<UnboundArgs>... unbound_args) { // Local references to make debugger stepping easier. If in a debugger, // you really want to warp ahead and step through the // InvokeHelper<>::MakeItSo() call below. StorageType* storage = static_cast<StorageType*>(base); static constexpr size_t num_bound_args = std::tuple_size<decltype(storage->bound_args_)>::value; return RunImpl(std::move(storage->functor_), std::move(storage->bound_args_), std::make_index_sequence<num_bound_args>(), std::forward<UnboundArgs>(unbound_args)...); } static R Run(BindStateBase* base, PassingType<UnboundArgs>... unbound_args) { // Local references to make debugger stepping easier. If in a debugger, // you really want to warp ahead and step through the // InvokeHelper<>::MakeItSo() call below. const StorageType* storage = static_cast<StorageType*>(base); static constexpr size_t num_bound_args = std::tuple_size<decltype(storage->bound_args_)>::value; return RunImpl(storage->functor_, storage->bound_args_, std::make_index_sequence<num_bound_args>(), std::forward<UnboundArgs>(unbound_args)...); } private: template <typename Functor, typename BoundArgsTuple, size_t... indices> static inline R RunImpl(Functor&& functor, BoundArgsTuple&& bound, std::index_sequence<indices...>, UnboundArgs&&... unbound_args) { static constexpr bool is_method = MakeFunctorTraits<Functor>::is_method; using DecayedArgsTuple = std::decay_t<BoundArgsTuple>; static constexpr bool is_weak_call = IsWeakMethod<is_method, std::tuple_element_t<indices, DecayedArgsTuple>...>(); return InvokeHelper<is_weak_call, R>::MakeItSo( std::forward<Functor>(functor), Unwrap(std::get<indices>(std::forward<BoundArgsTuple>(bound)))..., std::forward<UnboundArgs>(unbound_args)...); } }; // Extracts necessary type info from Functor and BoundArgs. // Used to implement MakeUnboundRunType, BindOnce and BindRepeating. template <typename Functor, typename... BoundArgs> struct BindTypeHelper { static constexpr size_t num_bounds = sizeof...(BoundArgs); using FunctorTraits = MakeFunctorTraits<Functor>; // Example: // When Functor is `double (Foo::*)(int, const std::string&)`, and BoundArgs // is a template pack of `Foo*` and `int16_t`: // - RunType is `double(Foo*, int, const std::string&)`, // - ReturnType is `double`, // - RunParamsList is `TypeList<Foo*, int, const std::string&>`, // - BoundParamsList is `TypeList<Foo*, int>`, // - UnboundParamsList is `TypeList<const std::string&>`, // - BoundArgsList is `TypeList<Foo*, int16_t>`, // - UnboundRunType is `double(const std::string&)`. using RunType = typename FunctorTraits::RunType; using ReturnType = ExtractReturnType<RunType>; using RunParamsList = ExtractArgs<RunType>; using BoundParamsList = TakeTypeListItem<num_bounds, RunParamsList>; using UnboundParamsList = DropTypeListItem<num_bounds, RunParamsList>; using BoundArgsList = TypeList<BoundArgs...>; using UnboundRunType = MakeFunctionType<ReturnType, UnboundParamsList>; }; template <typename Functor> std::enable_if_t<FunctorTraits<Functor>::is_nullable, bool> IsNull( const Functor& functor) { return !functor; } template <typename Functor> std::enable_if_t<!FunctorTraits<Functor>::is_nullable, bool> IsNull( const Functor&) { return false; } // Used by ApplyCancellationTraits below. template <typename Functor, typename BoundArgsTuple, size_t... indices> bool ApplyCancellationTraitsImpl(const Functor& functor, const BoundArgsTuple& bound_args, std::index_sequence<indices...>) { return CallbackCancellationTraits<Functor, BoundArgsTuple>::IsCancelled( functor, std::get<indices>(bound_args)...); } // Relays |base| to corresponding CallbackCancellationTraits<>::Run(). Returns // true if the callback |base| represents is canceled. template <typename BindStateType> bool ApplyCancellationTraits(const BindStateBase* base) { const BindStateType* storage = static_cast<const BindStateType*>(base); static constexpr size_t num_bound_args = std::tuple_size<decltype(storage->bound_args_)>::value; return ApplyCancellationTraitsImpl( storage->functor_, storage->bound_args_, std::make_index_sequence<num_bound_args>()); }; // BindState<> // // This stores all the state passed into Bind(). template <typename Functor, typename... BoundArgs> struct BindState final : BindStateBase { using IsCancellable = std::integral_constant< bool, CallbackCancellationTraits<Functor, std::tuple<BoundArgs...>>::is_cancellable>; template <typename ForwardFunctor, typename... ForwardBoundArgs> explicit BindState(BindStateBase::InvokeFuncStorage invoke_func, ForwardFunctor&& functor, ForwardBoundArgs&&... bound_args) // IsCancellable is std::false_type if // CallbackCancellationTraits<>::IsCancelled returns always false. // Otherwise, it's std::true_type. : BindState(IsCancellable{}, invoke_func, std::forward<ForwardFunctor>(functor), std::forward<ForwardBoundArgs>(bound_args)...) {} Functor functor_; std::tuple<BoundArgs...> bound_args_; private: template <typename ForwardFunctor, typename... ForwardBoundArgs> explicit BindState(std::true_type, BindStateBase::InvokeFuncStorage invoke_func, ForwardFunctor&& functor, ForwardBoundArgs&&... bound_args) : BindStateBase(invoke_func, &Destroy, &ApplyCancellationTraits<BindState>), functor_(std::forward<ForwardFunctor>(functor)), bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) { DCHECK(!IsNull(functor_)); } template <typename ForwardFunctor, typename... ForwardBoundArgs> explicit BindState(std::false_type, BindStateBase::InvokeFuncStorage invoke_func, ForwardFunctor&& functor, ForwardBoundArgs&&... bound_args) : BindStateBase(invoke_func, &Destroy), functor_(std::forward<ForwardFunctor>(functor)), bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) { DCHECK(!IsNull(functor_)); } ~BindState() = default; static void Destroy(const BindStateBase* self) { delete static_cast<const BindState*>(self); } }; // Used to implement MakeBindStateType. template <bool is_method, typename Functor, typename... BoundArgs> struct MakeBindStateTypeImpl; template <typename Functor, typename... BoundArgs> struct MakeBindStateTypeImpl<false, Functor, BoundArgs...> { static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value, "A parameter is a refcounted type and needs scoped_refptr."); using Type = BindState<std::decay_t<Functor>, std::decay_t<BoundArgs>...>; }; template <typename Functor> struct MakeBindStateTypeImpl<true, Functor> { using Type = BindState<std::decay_t<Functor>>; }; template <typename Functor, typename Receiver, typename... BoundArgs> struct MakeBindStateTypeImpl<true, Functor, Receiver, BoundArgs...> { private: using DecayedReceiver = std::decay_t<Receiver>; static_assert(!std::is_array<std::remove_reference_t<Receiver>>::value, "First bound argument to a method cannot be an array."); static_assert( !std::is_pointer<DecayedReceiver>::value || IsRefCountedType<std::remove_pointer_t<DecayedReceiver>>::value, "Receivers may not be raw pointers. If using a raw pointer here is safe" " and has no lifetime concerns, use base::Unretained() and document why" " it's safe."); static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value, "A parameter is a refcounted type and needs scoped_refptr."); public: using Type = BindState< std::decay_t<Functor>, std::conditional_t<std::is_pointer<DecayedReceiver>::value, scoped_refptr<std::remove_pointer_t<DecayedReceiver>>, DecayedReceiver>, std::decay_t<BoundArgs>...>; }; template <typename Functor, typename... BoundArgs> using MakeBindStateType = typename MakeBindStateTypeImpl<MakeFunctorTraits<Functor>::is_method, Functor, BoundArgs...>::Type; } // namespace internal // An injection point to control |this| pointer behavior on a method invocation. // If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a // method, base::Bind cancels the method invocation if the receiver is tested as // false. // E.g. Foo::bar() is not called: // struct Foo : base::SupportsWeakPtr<Foo> { // void bar() {} // }; // // WeakPtr<Foo> oo = nullptr; // base::Bind(&Foo::bar, oo).Run(); template <typename T> struct IsWeakReceiver : std::false_type {}; template <typename T> struct IsWeakReceiver<internal::ConstRefWrapper<T>> : IsWeakReceiver<T> {}; template <typename T> struct IsWeakReceiver<WeakPtr<T>> : std::true_type {}; // An injection point to control how bound objects passed to the target // function. BindUnwrapTraits<>::Unwrap() is called for each bound objects right // before the target function is invoked. template <typename> struct BindUnwrapTraits { template <typename T> static T&& Unwrap(T&& o) { return std::forward<T>(o); } }; template <typename T> struct BindUnwrapTraits<internal::UnretainedWrapper<T>> { static T* Unwrap(const internal::UnretainedWrapper<T>& o) { return o.get(); } }; template <typename T> struct BindUnwrapTraits<internal::ConstRefWrapper<T>> { static const T& Unwrap(const internal::ConstRefWrapper<T>& o) { return o.get(); } }; template <typename T> struct BindUnwrapTraits<internal::RetainedRefWrapper<T>> { static T* Unwrap(const internal::RetainedRefWrapper<T>& o) { return o.get(); } }; template <typename T> struct BindUnwrapTraits<internal::OwnedWrapper<T>> { static T* Unwrap(const internal::OwnedWrapper<T>& o) { return o.get(); } }; template <typename T> struct BindUnwrapTraits<internal::PassedWrapper<T>> { static T Unwrap(const internal::PassedWrapper<T>& o) { return o.Take(); } }; // CallbackCancellationTraits allows customization of Callback's cancellation // semantics. By default, callbacks are not cancellable. A specialization should // set is_cancellable = true and implement an IsCancelled() that returns if the // callback should be cancelled. template <typename Functor, typename BoundArgsTuple, typename SFINAE> struct CallbackCancellationTraits { static constexpr bool is_cancellable = false; }; // Specialization for method bound to weak pointer receiver. template <typename Functor, typename... BoundArgs> struct CallbackCancellationTraits< Functor, std::tuple<BoundArgs...>, std::enable_if_t< internal::IsWeakMethod<internal::FunctorTraits<Functor>::is_method, BoundArgs...>::value>> { static constexpr bool is_cancellable = true; template <typename Receiver, typename... Args> static bool IsCancelled(const Functor&, const Receiver& receiver, const Args&...) { return !receiver; } }; // Specialization for a nested bind. template <typename Signature, typename... BoundArgs> struct CallbackCancellationTraits<OnceCallback<Signature>, std::tuple<BoundArgs...>> { static constexpr bool is_cancellable = true; template <typename Functor> static bool IsCancelled(const Functor& functor, const BoundArgs&...) { return functor.IsCancelled(); } }; template <typename Signature, typename... BoundArgs> struct CallbackCancellationTraits<RepeatingCallback<Signature>, std::tuple<BoundArgs...>> { static constexpr bool is_cancellable = true; template <typename Functor> static bool IsCancelled(const Functor& functor, const BoundArgs&...) { return functor.IsCancelled(); } }; // Returns a RunType of bound functor. // E.g. MakeUnboundRunType<R(A, B, C), A, B> is evaluated to R(C). template <typename Functor, typename... BoundArgs> using MakeUnboundRunType = typename internal::BindTypeHelper<Functor, BoundArgs...>::UnboundRunType; } // namespace base #endif // BASE_BIND_INTERNAL_H_