#include <stdbool.h> #include <errno.h> #include <net/if.h> #include <netlink/genl/genl.h> #include <netlink/genl/family.h> #include <netlink/genl/ctrl.h> #include <netlink/msg.h> #include <netlink/attr.h> #include "nl80211.h" #include "iw.h" static void print_flag(const char *name, int *open) { if (!*open) printf(" ("); else printf(", "); printf("%s", name); *open = 1; } static char *cipher_name(__u32 c) { static char buf[20]; switch (c) { case 0x000fac01: return "WEP40 (00-0f-ac:1)"; case 0x000fac05: return "WEP104 (00-0f-ac:5)"; case 0x000fac02: return "TKIP (00-0f-ac:2)"; case 0x000fac04: return "CCMP (00-0f-ac:4)"; case 0x000fac06: return "CMAC (00-0f-ac:6)"; case 0x000fac08: return "GCMP (00-0f-ac:8)"; case 0x00147201: return "WPI-SMS4 (00-14-72:1)"; default: sprintf(buf, "%.2x-%.2x-%.2x:%d", c >> 24, (c >> 16) & 0xff, (c >> 8) & 0xff, c & 0xff); return buf; } } static char *dfs_state_name(enum nl80211_dfs_state state) { switch (state) { case NL80211_DFS_USABLE: return "usable"; case NL80211_DFS_AVAILABLE: return "available"; case NL80211_DFS_UNAVAILABLE: return "unavailable"; default: return "unknown"; } } static int ext_feature_isset(const unsigned char *ext_features, int ext_features_len, enum nl80211_ext_feature_index ftidx) { unsigned char ft_byte; if ((int) ftidx / 8 >= ext_features_len) return 0; ft_byte = ext_features[ftidx / 8]; return (ft_byte & BIT(ftidx % 8)) != 0; } static int print_phy_handler(struct nl_msg *msg, void *arg) { struct nlattr *tb_msg[NL80211_ATTR_MAX + 1]; struct genlmsghdr *gnlh = nlmsg_data(nlmsg_hdr(msg)); struct nlattr *tb_band[NL80211_BAND_ATTR_MAX + 1]; struct nlattr *tb_freq[NL80211_FREQUENCY_ATTR_MAX + 1]; static struct nla_policy freq_policy[NL80211_FREQUENCY_ATTR_MAX + 1] = { [NL80211_FREQUENCY_ATTR_FREQ] = { .type = NLA_U32 }, [NL80211_FREQUENCY_ATTR_DISABLED] = { .type = NLA_FLAG }, [NL80211_FREQUENCY_ATTR_NO_IR] = { .type = NLA_FLAG }, [__NL80211_FREQUENCY_ATTR_NO_IBSS] = { .type = NLA_FLAG }, [NL80211_FREQUENCY_ATTR_RADAR] = { .type = NLA_FLAG }, [NL80211_FREQUENCY_ATTR_MAX_TX_POWER] = { .type = NLA_U32 }, }; struct nlattr *tb_rate[NL80211_BITRATE_ATTR_MAX + 1]; static struct nla_policy rate_policy[NL80211_BITRATE_ATTR_MAX + 1] = { [NL80211_BITRATE_ATTR_RATE] = { .type = NLA_U32 }, [NL80211_BITRATE_ATTR_2GHZ_SHORTPREAMBLE] = { .type = NLA_FLAG }, }; struct nlattr *nl_band; struct nlattr *nl_freq; struct nlattr *nl_rate; struct nlattr *nl_mode; struct nlattr *nl_cmd; struct nlattr *nl_if, *nl_ftype; int rem_band, rem_freq, rem_rate, rem_mode, rem_cmd, rem_ftype, rem_if; int open; /* * static variables only work here, other applications need to use the * callback pointer and store them there so they can be multithreaded * and/or have multiple netlink sockets, etc. */ static int64_t phy_id = -1; static int last_band = -1; static bool band_had_freq = false; bool print_name = true; nla_parse(tb_msg, NL80211_ATTR_MAX, genlmsg_attrdata(gnlh, 0), genlmsg_attrlen(gnlh, 0), NULL); if (tb_msg[NL80211_ATTR_WIPHY]) { if (nla_get_u32(tb_msg[NL80211_ATTR_WIPHY]) == phy_id) print_name = false; else last_band = -1; phy_id = nla_get_u32(tb_msg[NL80211_ATTR_WIPHY]); } if (print_name && tb_msg[NL80211_ATTR_WIPHY_NAME]) printf("Wiphy %s\n", nla_get_string(tb_msg[NL80211_ATTR_WIPHY_NAME])); /* needed for split dump */ if (tb_msg[NL80211_ATTR_WIPHY_BANDS]) { nla_for_each_nested(nl_band, tb_msg[NL80211_ATTR_WIPHY_BANDS], rem_band) { if (last_band != nl_band->nla_type) { printf("\tBand %d:\n", nl_band->nla_type + 1); band_had_freq = false; } last_band = nl_band->nla_type; nla_parse(tb_band, NL80211_BAND_ATTR_MAX, nla_data(nl_band), nla_len(nl_band), NULL); if (tb_band[NL80211_BAND_ATTR_HT_CAPA]) { __u16 cap = nla_get_u16(tb_band[NL80211_BAND_ATTR_HT_CAPA]); print_ht_capability(cap); } if (tb_band[NL80211_BAND_ATTR_HT_AMPDU_FACTOR]) { __u8 exponent = nla_get_u8(tb_band[NL80211_BAND_ATTR_HT_AMPDU_FACTOR]); print_ampdu_length(exponent); } if (tb_band[NL80211_BAND_ATTR_HT_AMPDU_DENSITY]) { __u8 spacing = nla_get_u8(tb_band[NL80211_BAND_ATTR_HT_AMPDU_DENSITY]); print_ampdu_spacing(spacing); } if (tb_band[NL80211_BAND_ATTR_HT_MCS_SET] && nla_len(tb_band[NL80211_BAND_ATTR_HT_MCS_SET]) == 16) print_ht_mcs(nla_data(tb_band[NL80211_BAND_ATTR_HT_MCS_SET])); if (tb_band[NL80211_BAND_ATTR_VHT_CAPA] && tb_band[NL80211_BAND_ATTR_VHT_MCS_SET]) print_vht_info(nla_get_u32(tb_band[NL80211_BAND_ATTR_VHT_CAPA]), nla_data(tb_band[NL80211_BAND_ATTR_VHT_MCS_SET])); if (tb_band[NL80211_BAND_ATTR_FREQS]) { if (!band_had_freq) { printf("\t\tFrequencies:\n"); band_had_freq = true; } nla_for_each_nested(nl_freq, tb_band[NL80211_BAND_ATTR_FREQS], rem_freq) { uint32_t freq; nla_parse(tb_freq, NL80211_FREQUENCY_ATTR_MAX, nla_data(nl_freq), nla_len(nl_freq), freq_policy); if (!tb_freq[NL80211_FREQUENCY_ATTR_FREQ]) continue; freq = nla_get_u32(tb_freq[NL80211_FREQUENCY_ATTR_FREQ]); printf("\t\t\t* %d MHz [%d]", freq, ieee80211_frequency_to_channel(freq)); if (tb_freq[NL80211_FREQUENCY_ATTR_MAX_TX_POWER] && !tb_freq[NL80211_FREQUENCY_ATTR_DISABLED]) printf(" (%.1f dBm)", 0.01 * nla_get_u32(tb_freq[NL80211_FREQUENCY_ATTR_MAX_TX_POWER])); open = 0; if (tb_freq[NL80211_FREQUENCY_ATTR_DISABLED]) { print_flag("disabled", &open); goto next; } /* If both flags are set assume an new kernel */ if (tb_freq[NL80211_FREQUENCY_ATTR_NO_IR] && tb_freq[__NL80211_FREQUENCY_ATTR_NO_IBSS]) { print_flag("no IR", &open); } else if (tb_freq[NL80211_FREQUENCY_ATTR_PASSIVE_SCAN]) { print_flag("passive scan", &open); } else if (tb_freq[__NL80211_FREQUENCY_ATTR_NO_IBSS]){ print_flag("no ibss", &open); } if (tb_freq[NL80211_FREQUENCY_ATTR_RADAR]) print_flag("radar detection", &open); next: if (open) printf(")"); printf("\n"); if (!tb_freq[NL80211_FREQUENCY_ATTR_DISABLED] && tb_freq[NL80211_FREQUENCY_ATTR_DFS_STATE]) { enum nl80211_dfs_state state = nla_get_u32(tb_freq[NL80211_FREQUENCY_ATTR_DFS_STATE]); unsigned long time; printf("\t\t\t DFS state: %s", dfs_state_name(state)); if (tb_freq[NL80211_FREQUENCY_ATTR_DFS_TIME]) { time = nla_get_u32(tb_freq[NL80211_FREQUENCY_ATTR_DFS_TIME]); printf(" (for %lu sec)", time/1000); } printf("\n"); if (tb_freq[NL80211_FREQUENCY_ATTR_DFS_CAC_TIME]) printf("\t\t\t DFS CAC time: %u ms\n", nla_get_u32(tb_freq[NL80211_FREQUENCY_ATTR_DFS_CAC_TIME])); } } } if (tb_band[NL80211_BAND_ATTR_RATES]) { printf("\t\tBitrates (non-HT):\n"); nla_for_each_nested(nl_rate, tb_band[NL80211_BAND_ATTR_RATES], rem_rate) { nla_parse(tb_rate, NL80211_BITRATE_ATTR_MAX, nla_data(nl_rate), nla_len(nl_rate), rate_policy); if (!tb_rate[NL80211_BITRATE_ATTR_RATE]) continue; printf("\t\t\t* %2.1f Mbps", 0.1 * nla_get_u32(tb_rate[NL80211_BITRATE_ATTR_RATE])); open = 0; if (tb_rate[NL80211_BITRATE_ATTR_2GHZ_SHORTPREAMBLE]) print_flag("short preamble supported", &open); if (open) printf(")"); printf("\n"); } } } } if (tb_msg[NL80211_ATTR_MAX_NUM_SCAN_SSIDS]) printf("\tmax # scan SSIDs: %d\n", nla_get_u8(tb_msg[NL80211_ATTR_MAX_NUM_SCAN_SSIDS])); if (tb_msg[NL80211_ATTR_MAX_SCAN_IE_LEN]) printf("\tmax scan IEs length: %d bytes\n", nla_get_u16(tb_msg[NL80211_ATTR_MAX_SCAN_IE_LEN])); if (tb_msg[NL80211_ATTR_MAX_NUM_SCHED_SCAN_SSIDS]) printf("\tmax # sched scan SSIDs: %d\n", nla_get_u8(tb_msg[NL80211_ATTR_MAX_NUM_SCHED_SCAN_SSIDS])); if (tb_msg[NL80211_ATTR_MAX_MATCH_SETS]) printf("\tmax # match sets: %d\n", nla_get_u8(tb_msg[NL80211_ATTR_MAX_MATCH_SETS])); if (tb_msg[NL80211_ATTR_WIPHY_FRAG_THRESHOLD]) { unsigned int frag; frag = nla_get_u32(tb_msg[NL80211_ATTR_WIPHY_FRAG_THRESHOLD]); if (frag != (unsigned int)-1) printf("\tFragmentation threshold: %d\n", frag); } if (tb_msg[NL80211_ATTR_WIPHY_RTS_THRESHOLD]) { unsigned int rts; rts = nla_get_u32(tb_msg[NL80211_ATTR_WIPHY_RTS_THRESHOLD]); if (rts != (unsigned int)-1) printf("\tRTS threshold: %d\n", rts); } if (tb_msg[NL80211_ATTR_WIPHY_RETRY_SHORT] || tb_msg[NL80211_ATTR_WIPHY_RETRY_LONG]) { unsigned char retry_short = 0, retry_long = 0; if (tb_msg[NL80211_ATTR_WIPHY_RETRY_SHORT]) retry_short = nla_get_u8(tb_msg[NL80211_ATTR_WIPHY_RETRY_SHORT]); if (tb_msg[NL80211_ATTR_WIPHY_RETRY_LONG]) retry_long = nla_get_u8(tb_msg[NL80211_ATTR_WIPHY_RETRY_LONG]); if (retry_short == retry_long) { printf("\tRetry short long limit: %d\n", retry_short); } else { printf("\tRetry short limit: %d\n", retry_short); printf("\tRetry long limit: %d\n", retry_long); } } if (tb_msg[NL80211_ATTR_WIPHY_COVERAGE_CLASS]) { unsigned char coverage; coverage = nla_get_u8(tb_msg[NL80211_ATTR_WIPHY_COVERAGE_CLASS]); /* See handle_distance() for an explanation where the '450' comes from */ printf("\tCoverage class: %d (up to %dm)\n", coverage, 450 * coverage); } if (tb_msg[NL80211_ATTR_CIPHER_SUITES]) { int num = nla_len(tb_msg[NL80211_ATTR_CIPHER_SUITES]) / sizeof(__u32); int i; __u32 *ciphers = nla_data(tb_msg[NL80211_ATTR_CIPHER_SUITES]); if (num > 0) { printf("\tSupported Ciphers:\n"); for (i = 0; i < num; i++) printf("\t\t* %s\n", cipher_name(ciphers[i])); } } if (tb_msg[NL80211_ATTR_WIPHY_ANTENNA_AVAIL_TX] && tb_msg[NL80211_ATTR_WIPHY_ANTENNA_AVAIL_RX]) printf("\tAvailable Antennas: TX %#x RX %#x\n", nla_get_u32(tb_msg[NL80211_ATTR_WIPHY_ANTENNA_AVAIL_TX]), nla_get_u32(tb_msg[NL80211_ATTR_WIPHY_ANTENNA_AVAIL_RX])); if (tb_msg[NL80211_ATTR_WIPHY_ANTENNA_TX] && tb_msg[NL80211_ATTR_WIPHY_ANTENNA_RX]) printf("\tConfigured Antennas: TX %#x RX %#x\n", nla_get_u32(tb_msg[NL80211_ATTR_WIPHY_ANTENNA_TX]), nla_get_u32(tb_msg[NL80211_ATTR_WIPHY_ANTENNA_RX])); if (tb_msg[NL80211_ATTR_SUPPORTED_IFTYPES]) { printf("\tSupported interface modes:\n"); nla_for_each_nested(nl_mode, tb_msg[NL80211_ATTR_SUPPORTED_IFTYPES], rem_mode) printf("\t\t * %s\n", iftype_name(nla_type(nl_mode))); } if (tb_msg[NL80211_ATTR_SOFTWARE_IFTYPES]) { printf("\tsoftware interface modes (can always be added):\n"); nla_for_each_nested(nl_mode, tb_msg[NL80211_ATTR_SOFTWARE_IFTYPES], rem_mode) printf("\t\t * %s\n", iftype_name(nla_type(nl_mode))); } if (tb_msg[NL80211_ATTR_INTERFACE_COMBINATIONS]) { struct nlattr *nl_combi; int rem_combi; bool have_combinations = false; nla_for_each_nested(nl_combi, tb_msg[NL80211_ATTR_INTERFACE_COMBINATIONS], rem_combi) { static struct nla_policy iface_combination_policy[NUM_NL80211_IFACE_COMB] = { [NL80211_IFACE_COMB_LIMITS] = { .type = NLA_NESTED }, [NL80211_IFACE_COMB_MAXNUM] = { .type = NLA_U32 }, [NL80211_IFACE_COMB_STA_AP_BI_MATCH] = { .type = NLA_FLAG }, [NL80211_IFACE_COMB_NUM_CHANNELS] = { .type = NLA_U32 }, [NL80211_IFACE_COMB_RADAR_DETECT_WIDTHS] = { .type = NLA_U32 }, }; struct nlattr *tb_comb[NUM_NL80211_IFACE_COMB]; static struct nla_policy iface_limit_policy[NUM_NL80211_IFACE_LIMIT] = { [NL80211_IFACE_LIMIT_TYPES] = { .type = NLA_NESTED }, [NL80211_IFACE_LIMIT_MAX] = { .type = NLA_U32 }, }; struct nlattr *tb_limit[NUM_NL80211_IFACE_LIMIT]; struct nlattr *nl_limit; int err, rem_limit; bool comma = false; if (!have_combinations) { printf("\tvalid interface combinations:\n"); have_combinations = true; } printf("\t\t * "); err = nla_parse_nested(tb_comb, MAX_NL80211_IFACE_COMB, nl_combi, iface_combination_policy); if (err || !tb_comb[NL80211_IFACE_COMB_LIMITS] || !tb_comb[NL80211_IFACE_COMB_MAXNUM] || !tb_comb[NL80211_IFACE_COMB_NUM_CHANNELS]) { printf(" <failed to parse>\n"); goto broken_combination; } nla_for_each_nested(nl_limit, tb_comb[NL80211_IFACE_COMB_LIMITS], rem_limit) { bool ift_comma = false; err = nla_parse_nested(tb_limit, MAX_NL80211_IFACE_LIMIT, nl_limit, iface_limit_policy); if (err || !tb_limit[NL80211_IFACE_LIMIT_TYPES]) { printf("<failed to parse>\n"); goto broken_combination; } if (comma) printf(", "); comma = true; printf("#{"); nla_for_each_nested(nl_mode, tb_limit[NL80211_IFACE_LIMIT_TYPES], rem_mode) { printf("%s %s", ift_comma ? "," : "", iftype_name(nla_type(nl_mode))); ift_comma = true; } printf(" } <= %u", nla_get_u32(tb_limit[NL80211_IFACE_LIMIT_MAX])); } printf(",\n\t\t "); printf("total <= %d, #channels <= %d%s", nla_get_u32(tb_comb[NL80211_IFACE_COMB_MAXNUM]), nla_get_u32(tb_comb[NL80211_IFACE_COMB_NUM_CHANNELS]), tb_comb[NL80211_IFACE_COMB_STA_AP_BI_MATCH] ? ", STA/AP BI must match" : ""); if (tb_comb[NL80211_IFACE_COMB_RADAR_DETECT_WIDTHS]) { unsigned long widths = nla_get_u32(tb_comb[NL80211_IFACE_COMB_RADAR_DETECT_WIDTHS]); if (widths) { int width; bool first = true; printf(", radar detect widths: {"); for (width = 0; width < 32; width++) if (widths & (1 << width)) { printf("%s %s", first ? "":",", channel_width_name(width)); first = false; } printf(" }\n"); } } printf("\n"); broken_combination: ; } if (!have_combinations) printf("\tinterface combinations are not supported\n"); } if (tb_msg[NL80211_ATTR_SUPPORTED_COMMANDS]) { printf("\tSupported commands:\n"); nla_for_each_nested(nl_cmd, tb_msg[NL80211_ATTR_SUPPORTED_COMMANDS], rem_cmd) printf("\t\t * %s\n", command_name(nla_get_u32(nl_cmd))); } if (tb_msg[NL80211_ATTR_TX_FRAME_TYPES]) { printf("\tSupported TX frame types:\n"); nla_for_each_nested(nl_if, tb_msg[NL80211_ATTR_TX_FRAME_TYPES], rem_if) { bool printed = false; nla_for_each_nested(nl_ftype, nl_if, rem_ftype) { if (!printed) printf("\t\t * %s:", iftype_name(nla_type(nl_if))); printed = true; printf(" 0x%.2x", nla_get_u16(nl_ftype)); } if (printed) printf("\n"); } } if (tb_msg[NL80211_ATTR_RX_FRAME_TYPES]) { printf("\tSupported RX frame types:\n"); nla_for_each_nested(nl_if, tb_msg[NL80211_ATTR_RX_FRAME_TYPES], rem_if) { bool printed = false; nla_for_each_nested(nl_ftype, nl_if, rem_ftype) { if (!printed) printf("\t\t * %s:", iftype_name(nla_type(nl_if))); printed = true; printf(" 0x%.2x", nla_get_u16(nl_ftype)); } if (printed) printf("\n"); } } if (tb_msg[NL80211_ATTR_SUPPORT_IBSS_RSN]) printf("\tDevice supports RSN-IBSS.\n"); if (tb_msg[NL80211_ATTR_WOWLAN_TRIGGERS_SUPPORTED]) { struct nlattr *tb_wowlan[NUM_NL80211_WOWLAN_TRIG]; static struct nla_policy wowlan_policy[NUM_NL80211_WOWLAN_TRIG] = { [NL80211_WOWLAN_TRIG_ANY] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_DISCONNECT] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_MAGIC_PKT] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_PKT_PATTERN] = { .minlen = 12 }, [NL80211_WOWLAN_TRIG_GTK_REKEY_SUPPORTED] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_GTK_REKEY_FAILURE] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_EAP_IDENT_REQUEST] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_4WAY_HANDSHAKE] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_RFKILL_RELEASE] = { .type = NLA_FLAG }, [NL80211_WOWLAN_TRIG_NET_DETECT] = { .type = NLA_U32 }, [NL80211_WOWLAN_TRIG_TCP_CONNECTION] = { .type = NLA_NESTED }, }; struct nl80211_pattern_support *pat; int err; err = nla_parse_nested(tb_wowlan, MAX_NL80211_WOWLAN_TRIG, tb_msg[NL80211_ATTR_WOWLAN_TRIGGERS_SUPPORTED], wowlan_policy); printf("\tWoWLAN support:"); if (err) { printf(" <failed to parse>\n"); } else { printf("\n"); if (tb_wowlan[NL80211_WOWLAN_TRIG_ANY]) printf("\t\t * wake up on anything (device continues operating normally)\n"); if (tb_wowlan[NL80211_WOWLAN_TRIG_DISCONNECT]) printf("\t\t * wake up on disconnect\n"); if (tb_wowlan[NL80211_WOWLAN_TRIG_MAGIC_PKT]) printf("\t\t * wake up on magic packet\n"); if (tb_wowlan[NL80211_WOWLAN_TRIG_PKT_PATTERN]) { pat = nla_data(tb_wowlan[NL80211_WOWLAN_TRIG_PKT_PATTERN]); printf("\t\t * wake up on pattern match, up to %u patterns of %u-%u bytes,\n" "\t\t maximum packet offset %u bytes\n", pat->max_patterns, pat->min_pattern_len, pat->max_pattern_len, (nla_len(tb_wowlan[NL80211_WOWLAN_TRIG_PKT_PATTERN]) < sizeof(*pat)) ? 0 : pat->max_pkt_offset); } if (tb_wowlan[NL80211_WOWLAN_TRIG_GTK_REKEY_SUPPORTED]) printf("\t\t * can do GTK rekeying\n"); if (tb_wowlan[NL80211_WOWLAN_TRIG_GTK_REKEY_FAILURE]) printf("\t\t * wake up on GTK rekey failure\n"); if (tb_wowlan[NL80211_WOWLAN_TRIG_EAP_IDENT_REQUEST]) printf("\t\t * wake up on EAP identity request\n"); if (tb_wowlan[NL80211_WOWLAN_TRIG_4WAY_HANDSHAKE]) printf("\t\t * wake up on 4-way handshake\n"); if (tb_wowlan[NL80211_WOWLAN_TRIG_RFKILL_RELEASE]) printf("\t\t * wake up on rfkill release\n"); if (tb_wowlan[NL80211_WOWLAN_TRIG_NET_DETECT]) printf("\t\t * wake up on network detection, up to %d match sets\n", nla_get_u32(tb_wowlan[NL80211_WOWLAN_TRIG_NET_DETECT])); if (tb_wowlan[NL80211_WOWLAN_TRIG_TCP_CONNECTION]) printf("\t\t * wake up on TCP connection\n"); } } if (tb_msg[NL80211_ATTR_ROAM_SUPPORT]) printf("\tDevice supports roaming.\n"); if (tb_msg[NL80211_ATTR_SUPPORT_AP_UAPSD]) printf("\tDevice supports AP-side u-APSD.\n"); if (tb_msg[NL80211_ATTR_HT_CAPABILITY_MASK]) { struct ieee80211_ht_cap *cm; printf("\tHT Capability overrides:\n"); if (nla_len(tb_msg[NL80211_ATTR_HT_CAPABILITY_MASK]) >= sizeof(*cm)) { cm = nla_data(tb_msg[NL80211_ATTR_HT_CAPABILITY_MASK]); printf("\t\t * MCS: %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx" " %02hhx %02hhx %02hhx %02hhx\n", cm->mcs.rx_mask[0], cm->mcs.rx_mask[1], cm->mcs.rx_mask[2], cm->mcs.rx_mask[3], cm->mcs.rx_mask[4], cm->mcs.rx_mask[5], cm->mcs.rx_mask[6], cm->mcs.rx_mask[7], cm->mcs.rx_mask[8], cm->mcs.rx_mask[9]); if (cm->cap_info & htole16(IEEE80211_HT_CAP_MAX_AMSDU)) printf("\t\t * maximum A-MSDU length\n"); if (cm->cap_info & htole16(IEEE80211_HT_CAP_SUP_WIDTH_20_40)) printf("\t\t * supported channel width\n"); if (cm->cap_info & htole16(IEEE80211_HT_CAP_SGI_40)) printf("\t\t * short GI for 40 MHz\n"); if (cm->ampdu_params_info & IEEE80211_HT_AMPDU_PARM_FACTOR) printf("\t\t * max A-MPDU length exponent\n"); if (cm->ampdu_params_info & IEEE80211_HT_AMPDU_PARM_DENSITY) printf("\t\t * min MPDU start spacing\n"); } else { printf("\tERROR: capabilities mask is too short, expected: %d, received: %d\n", (int)(sizeof(*cm)), (int)(nla_len(tb_msg[NL80211_ATTR_HT_CAPABILITY_MASK]))); } } if (tb_msg[NL80211_ATTR_FEATURE_FLAGS]) { unsigned int features = nla_get_u32(tb_msg[NL80211_ATTR_FEATURE_FLAGS]); if (features & NL80211_FEATURE_SK_TX_STATUS) printf("\tDevice supports TX status socket option.\n"); if (features & NL80211_FEATURE_HT_IBSS) printf("\tDevice supports HT-IBSS.\n"); if (features & NL80211_FEATURE_INACTIVITY_TIMER) printf("\tDevice has client inactivity timer.\n"); if (features & NL80211_FEATURE_CELL_BASE_REG_HINTS) printf("\tDevice accepts cell base station regulatory hints.\n"); if (features & NL80211_FEATURE_P2P_DEVICE_NEEDS_CHANNEL) printf("\tP2P Device uses a channel (of the concurrent ones)\n"); if (features & NL80211_FEATURE_SAE) printf("\tDevice supports SAE with AUTHENTICATE command\n"); if (features & NL80211_FEATURE_LOW_PRIORITY_SCAN) printf("\tDevice supports low priority scan.\n"); if (features & NL80211_FEATURE_SCAN_FLUSH) printf("\tDevice supports scan flush.\n"); if (features & NL80211_FEATURE_AP_SCAN) printf("\tDevice supports AP scan.\n"); if (features & NL80211_FEATURE_VIF_TXPOWER) printf("\tDevice supports per-vif TX power setting\n"); if (features & NL80211_FEATURE_NEED_OBSS_SCAN) printf("\tUserspace should do OBSS scan and generate 20/40 coex reports\n"); if (features & NL80211_FEATURE_P2P_GO_CTWIN) printf("\tP2P GO supports CT window setting\n"); if (features & NL80211_FEATURE_P2P_GO_OPPPS) printf("\tP2P GO supports opportunistic powersave setting\n"); if (features & NL80211_FEATURE_FULL_AP_CLIENT_STATE) printf("\tDriver supports full state transitions for AP/GO clients\n"); if (features & NL80211_FEATURE_USERSPACE_MPM) printf("\tDriver supports a userspace MPM\n"); if (features & NL80211_FEATURE_ACTIVE_MONITOR) printf("\tDevice supports active monitor (which will ACK incoming frames)\n"); if (features & NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE) printf("\tDriver/device bandwidth changes during BSS lifetime (AP/GO mode)\n"); if (features & NL80211_FEATURE_DS_PARAM_SET_IE_IN_PROBES) printf("\tDevice adds DS IE to probe requests\n"); if (features & NL80211_FEATURE_WFA_TPC_IE_IN_PROBES) printf("\tDevice adds WFA TPC Report IE to probe requests\n"); if (features & NL80211_FEATURE_QUIET) printf("\tDevice supports quiet requests from AP\n"); if (features & NL80211_FEATURE_TX_POWER_INSERTION) printf("\tDevice can update TPC Report IE\n"); if (features & NL80211_FEATURE_ACKTO_ESTIMATION) printf("\tDevice supports ACK timeout estimation.\n"); if (features & NL80211_FEATURE_STATIC_SMPS) printf("\tDevice supports static SMPS\n"); if (features & NL80211_FEATURE_DYNAMIC_SMPS) printf("\tDevice supports dynamic SMPS\n"); if (features & NL80211_FEATURE_SUPPORTS_WMM_ADMISSION) printf("\tDevice supports WMM-AC admission (TSPECs)\n"); if (features & NL80211_FEATURE_MAC_ON_CREATE) printf("\tDevice supports configuring vdev MAC-addr on create.\n"); if (features & NL80211_FEATURE_TDLS_CHANNEL_SWITCH) printf("\tDevice supports TDLS channel switching\n"); } if (tb_msg[NL80211_ATTR_EXT_FEATURES]) { struct nlattr *tb = tb_msg[NL80211_ATTR_EXT_FEATURES]; if (ext_feature_isset(nla_data(tb), nla_len(tb), NL80211_EXT_FEATURE_VHT_IBSS)) printf("\tDevice supports VHT-IBSS.\n"); } if (tb_msg[NL80211_ATTR_TDLS_SUPPORT]) printf("\tDevice supports T-DLS.\n"); if (tb_msg[NL80211_ATTR_COALESCE_RULE]) { struct nl80211_coalesce_rule_support *rule; struct nl80211_pattern_support *pat; printf("\tCoalesce support:\n"); rule = nla_data(tb_msg[NL80211_ATTR_COALESCE_RULE]); pat = &rule->pat; printf("\t\t * Maximum %u coalesce rules supported\n" "\t\t * Each rule contains upto %u patterns of %u-%u bytes,\n" "\t\t maximum packet offset %u bytes\n" "\t\t * Maximum supported coalescing delay %u msecs\n", rule->max_rules, pat->max_patterns, pat->min_pattern_len, pat->max_pattern_len, pat->max_pkt_offset, rule->max_delay); } return NL_SKIP; } static bool nl80211_has_split_wiphy = false; static int handle_info(struct nl80211_state *state, struct nl_cb *cb, struct nl_msg *msg, int argc, char **argv, enum id_input id) { char *feat_args[] = { "features", "-q" }; int err; err = handle_cmd(state, CIB_NONE, 2, feat_args); if (!err && nl80211_has_split_wiphy) { nla_put_flag(msg, NL80211_ATTR_SPLIT_WIPHY_DUMP); nlmsg_hdr(msg)->nlmsg_flags |= NLM_F_DUMP; } nl_cb_set(cb, NL_CB_VALID, NL_CB_CUSTOM, print_phy_handler, NULL); return 0; } __COMMAND(NULL, info, "info", NULL, NL80211_CMD_GET_WIPHY, 0, 0, CIB_PHY, handle_info, "Show capabilities for the specified wireless device.", NULL); TOPLEVEL(list, NULL, NL80211_CMD_GET_WIPHY, NLM_F_DUMP, CIB_NONE, handle_info, "List all wireless devices and their capabilities."); TOPLEVEL(phy, NULL, NL80211_CMD_GET_WIPHY, NLM_F_DUMP, CIB_NONE, handle_info, NULL); static int handle_commands(struct nl80211_state *state, struct nl_cb *cb, struct nl_msg *msg, int argc, char **argv, enum id_input id) { int i; for (i = 1; i < NL80211_CMD_MAX; i++) printf("%d (0x%x): %s\n", i, i, command_name(i)); /* don't send netlink messages */ return 2; } TOPLEVEL(commands, NULL, NL80211_CMD_GET_WIPHY, 0, CIB_NONE, handle_commands, "list all known commands and their decimal & hex value"); static int print_feature_handler(struct nl_msg *msg, void *arg) { struct nlattr *tb_msg[NL80211_ATTR_MAX + 1]; struct genlmsghdr *gnlh = nlmsg_data(nlmsg_hdr(msg)); bool print = (unsigned long)arg; #define maybe_printf(...) do { if (print) printf(__VA_ARGS__); } while (0) nla_parse(tb_msg, NL80211_ATTR_MAX, genlmsg_attrdata(gnlh, 0), genlmsg_attrlen(gnlh, 0), NULL); if (tb_msg[NL80211_ATTR_PROTOCOL_FEATURES]) { uint32_t feat = nla_get_u32(tb_msg[NL80211_ATTR_PROTOCOL_FEATURES]); maybe_printf("nl80211 features: 0x%x\n", feat); if (feat & NL80211_PROTOCOL_FEATURE_SPLIT_WIPHY_DUMP) { maybe_printf("\t* split wiphy dump\n"); nl80211_has_split_wiphy = true; } } return NL_SKIP; } static int handle_features(struct nl80211_state *state, struct nl_cb *cb, struct nl_msg *msg, int argc, char **argv, enum id_input id) { unsigned long print = argc == 0 || strcmp(argv[0], "-q"); nl_cb_set(cb, NL_CB_VALID, NL_CB_CUSTOM, print_feature_handler, (void *)print); return 0; } TOPLEVEL(features, "", NL80211_CMD_GET_PROTOCOL_FEATURES, 0, CIB_NONE, handle_features, "");