/* $USAGI: $ */ /* * Copyright (C)2004 USAGI/WIDE Project * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see <http://www.gnu.org/licenses>. */ /* * based on ip.c, iproute.c */ /* * Authors: * Masahide NAKAMURA @USAGI */ #include <alloca.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <time.h> #include <netdb.h> #include <linux/netlink.h> #include <linux/rtnetlink.h> #include "utils.h" #include "xfrm.h" #include "ip_common.h" #define STRBUF_SIZE (128) struct xfrm_filter filter; static void usage(void) __attribute__((noreturn)); static void usage(void) { fprintf(stderr, "Usage: ip xfrm XFRM-OBJECT { COMMAND | help }\n" "where XFRM-OBJECT := state | policy | monitor\n"); exit(-1); } /* This is based on utils.c(inet_addr_match) */ int xfrm_addr_match(xfrm_address_t *x1, xfrm_address_t *x2, int bits) { __u32 *a1 = (__u32 *)x1; __u32 *a2 = (__u32 *)x2; int words = bits >> 0x05; bits &= 0x1f; if (words) if (memcmp(a1, a2, words << 2)) return -1; if (bits) { __u32 w1, w2; __u32 mask; w1 = a1[words]; w2 = a2[words]; mask = htonl((0xffffffff) << (0x20 - bits)); if ((w1 ^ w2) & mask) return 1; } return 0; } int xfrm_xfrmproto_is_ipsec(__u8 proto) { return (proto == IPPROTO_ESP || proto == IPPROTO_AH || proto == IPPROTO_COMP); } int xfrm_xfrmproto_is_ro(__u8 proto) { return (proto == IPPROTO_ROUTING || proto == IPPROTO_DSTOPTS); } struct typeent { const char *t_name; int t_type; }; static const struct typeent xfrmproto_types[] = { { "esp", IPPROTO_ESP }, { "ah", IPPROTO_AH }, { "comp", IPPROTO_COMP }, { "route2", IPPROTO_ROUTING }, { "hao", IPPROTO_DSTOPTS }, { "ipsec-any", IPSEC_PROTO_ANY }, { NULL, -1 } }; int xfrm_xfrmproto_getbyname(char *name) { int i; for (i = 0; ; i++) { const struct typeent *t = &xfrmproto_types[i]; if (!t->t_name || t->t_type == -1) break; if (strcmp(t->t_name, name) == 0) return t->t_type; } return -1; } const char *strxf_xfrmproto(__u8 proto) { static char str[16]; int i; for (i = 0; ; i++) { const struct typeent *t = &xfrmproto_types[i]; if (!t->t_name || t->t_type == -1) break; if (t->t_type == proto) return t->t_name; } sprintf(str, "%u", proto); return str; } static const struct typeent algo_types[] = { { "enc", XFRMA_ALG_CRYPT }, { "auth", XFRMA_ALG_AUTH }, { "comp", XFRMA_ALG_COMP }, { "aead", XFRMA_ALG_AEAD }, { "auth-trunc", XFRMA_ALG_AUTH_TRUNC }, { NULL, -1 } }; int xfrm_algotype_getbyname(char *name) { int i; for (i = 0; ; i++) { const struct typeent *t = &algo_types[i]; if (!t->t_name || t->t_type == -1) break; if (strcmp(t->t_name, name) == 0) return t->t_type; } return -1; } const char *strxf_algotype(int type) { static char str[32]; int i; for (i = 0; ; i++) { const struct typeent *t = &algo_types[i]; if (!t->t_name || t->t_type == -1) break; if (t->t_type == type) return t->t_name; } sprintf(str, "%d", type); return str; } const char *strxf_mask8(__u8 mask) { static char str[16]; const int sn = sizeof(mask) * 8 - 1; __u8 b; int i = 0; for (b = (1 << sn); b > 0; b >>= 1) str[i++] = ((b & mask) ? '1' : '0'); str[i] = '\0'; return str; } const char *strxf_mask32(__u32 mask) { static char str[16]; sprintf(str, "%.8x", mask); return str; } const char *strxf_share(__u8 share) { static char str[32]; switch (share) { case XFRM_SHARE_ANY: strcpy(str, "any"); break; case XFRM_SHARE_SESSION: strcpy(str, "session"); break; case XFRM_SHARE_USER: strcpy(str, "user"); break; case XFRM_SHARE_UNIQUE: strcpy(str, "unique"); break; default: sprintf(str, "%u", share); break; } return str; } const char *strxf_proto(__u8 proto) { static char buf[32]; struct protoent *pp; const char *p; pp = getprotobynumber(proto); if (pp) p = pp->p_name; else { sprintf(buf, "%u", proto); p = buf; } return p; } const char *strxf_ptype(__u8 ptype) { static char str[16]; switch (ptype) { case XFRM_POLICY_TYPE_MAIN: strcpy(str, "main"); break; case XFRM_POLICY_TYPE_SUB: strcpy(str, "sub"); break; default: sprintf(str, "%u", ptype); break; } return str; } void xfrm_id_info_print(xfrm_address_t *saddr, struct xfrm_id *id, __u8 mode, __u32 reqid, __u16 family, int force_spi, FILE *fp, const char *prefix, const char *title) { if (title) fputs(title, fp); fprintf(fp, "src %s ", rt_addr_n2a(family, sizeof(*saddr), saddr)); fprintf(fp, "dst %s", rt_addr_n2a(family, sizeof(id->daddr), &id->daddr)); fprintf(fp, "%s", _SL_); if (prefix) fputs(prefix, fp); fprintf(fp, "\t"); fprintf(fp, "proto %s ", strxf_xfrmproto(id->proto)); if (show_stats > 0 || force_spi || id->spi) { __u32 spi = ntohl(id->spi); fprintf(fp, "spi 0x%08x", spi); if (show_stats > 0) fprintf(fp, "(%u)", spi); fprintf(fp, " "); } fprintf(fp, "reqid %u", reqid); if (show_stats > 0) fprintf(fp, "(0x%08x)", reqid); fprintf(fp, " "); fprintf(fp, "mode "); switch (mode) { case XFRM_MODE_TRANSPORT: fprintf(fp, "transport"); break; case XFRM_MODE_TUNNEL: fprintf(fp, "tunnel"); break; case XFRM_MODE_ROUTEOPTIMIZATION: fprintf(fp, "ro"); break; case XFRM_MODE_IN_TRIGGER: fprintf(fp, "in_trigger"); break; case XFRM_MODE_BEET: fprintf(fp, "beet"); break; default: fprintf(fp, "%u", mode); break; } fprintf(fp, "%s", _SL_); } static const char *strxf_limit(__u64 limit) { static char str[32]; if (limit == XFRM_INF) strcpy(str, "(INF)"); else sprintf(str, "%llu", (unsigned long long) limit); return str; } void xfrm_stats_print(struct xfrm_stats *s, FILE *fp, const char *prefix) { if (prefix) fputs(prefix, fp); fprintf(fp, "stats:%s", _SL_); if (prefix) fputs(prefix, fp); fprintf(fp, " replay-window %u replay %u failed %u%s", s->replay_window, s->replay, s->integrity_failed, _SL_); } static const char *strxf_time(__u64 time) { static char str[32]; if (time == 0) strcpy(str, "-"); else { time_t t; struct tm *tp; /* XXX: treat time in the same manner of kernel's * net/xfrm/xfrm_{user,state}.c */ t = (long)time; tp = localtime(&t); strftime(str, sizeof(str), "%Y-%m-%d %T", tp); } return str; } void xfrm_lifetime_print(struct xfrm_lifetime_cfg *cfg, struct xfrm_lifetime_cur *cur, FILE *fp, const char *prefix) { if (cfg) { if (prefix) fputs(prefix, fp); fprintf(fp, "lifetime config:%s", _SL_); if (prefix) fputs(prefix, fp); fprintf(fp, " limit: soft %s(bytes),", strxf_limit(cfg->soft_byte_limit)); fprintf(fp, " hard %s(bytes)%s", strxf_limit(cfg->hard_byte_limit), _SL_); if (prefix) fputs(prefix, fp); fprintf(fp, " limit: soft %s(packets),", strxf_limit(cfg->soft_packet_limit)); fprintf(fp, " hard %s(packets)%s", strxf_limit(cfg->hard_packet_limit), _SL_); if (prefix) fputs(prefix, fp); fprintf(fp, " expire add: soft %llu(sec), hard %llu(sec)%s", (unsigned long long) cfg->soft_add_expires_seconds, (unsigned long long) cfg->hard_add_expires_seconds, _SL_); if (prefix) fputs(prefix, fp); fprintf(fp, " expire use: soft %llu(sec), hard %llu(sec)%s", (unsigned long long) cfg->soft_use_expires_seconds, (unsigned long long) cfg->hard_use_expires_seconds, _SL_); } if (cur) { if (prefix) fputs(prefix, fp); fprintf(fp, "lifetime current:%s", _SL_); if (prefix) fputs(prefix, fp); fprintf(fp, " %llu(bytes), %llu(packets)%s", (unsigned long long) cur->bytes, (unsigned long long) cur->packets, _SL_); if (prefix) fputs(prefix, fp); fprintf(fp, " add %s ", strxf_time(cur->add_time)); fprintf(fp, "use %s%s", strxf_time(cur->use_time), _SL_); } } void xfrm_selector_print(struct xfrm_selector *sel, __u16 family, FILE *fp, const char *prefix) { __u16 f; f = sel->family; if (f == AF_UNSPEC) f = family; if (f == AF_UNSPEC) f = preferred_family; if (prefix) fputs(prefix, fp); fprintf(fp, "src %s/%u ", rt_addr_n2a(f, sizeof(sel->saddr), &sel->saddr), sel->prefixlen_s); fprintf(fp, "dst %s/%u ", rt_addr_n2a(f, sizeof(sel->daddr), &sel->daddr), sel->prefixlen_d); if (sel->proto) fprintf(fp, "proto %s ", strxf_proto(sel->proto)); switch (sel->proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_SCTP: case IPPROTO_DCCP: default: /* XXX */ if (sel->sport_mask) fprintf(fp, "sport %u ", ntohs(sel->sport)); if (sel->dport_mask) fprintf(fp, "dport %u ", ntohs(sel->dport)); break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: /* type/code is stored at sport/dport in selector */ if (sel->sport_mask) fprintf(fp, "type %u ", ntohs(sel->sport)); if (sel->dport_mask) fprintf(fp, "code %u ", ntohs(sel->dport)); break; case IPPROTO_GRE: if (sel->sport_mask || sel->dport_mask) fprintf(fp, "key %u ", (((__u32)ntohs(sel->sport)) << 16) + ntohs(sel->dport)); break; case IPPROTO_MH: if (sel->sport_mask) fprintf(fp, "type %u ", ntohs(sel->sport)); if (sel->dport_mask) { if (show_stats > 0) fprintf(fp, "(dport) 0x%.4x ", sel->dport); } break; } if (sel->ifindex > 0) fprintf(fp, "dev %s ", ll_index_to_name(sel->ifindex)); if (show_stats > 0) fprintf(fp, "uid %u", sel->user); fprintf(fp, "%s", _SL_); } static void __xfrm_algo_print(struct xfrm_algo *algo, int type, int len, FILE *fp, const char *prefix, int newline) { int keylen; int i; if (prefix) fputs(prefix, fp); fprintf(fp, "%s ", strxf_algotype(type)); if (len < sizeof(*algo)) { fprintf(fp, "(ERROR truncated)"); goto fin; } len -= sizeof(*algo); fprintf(fp, "%s ", algo->alg_name); keylen = algo->alg_key_len / 8; if (len < keylen) { fprintf(fp, "(ERROR truncated)"); goto fin; } if (keylen > 0) { fprintf(fp, "0x"); for (i = 0; i < keylen; i++) fprintf(fp, "%.2x", (unsigned char)algo->alg_key[i]); if (show_stats > 0) fprintf(fp, " (%d bits)", algo->alg_key_len); } fin: if (newline) fprintf(fp, "%s", _SL_); } static inline void xfrm_algo_print(struct xfrm_algo *algo, int type, int len, FILE *fp, const char *prefix) { return __xfrm_algo_print(algo, type, len, fp, prefix, 1); } static void xfrm_aead_print(struct xfrm_algo_aead *algo, int len, FILE *fp, const char *prefix) { struct xfrm_algo *base_algo = alloca(sizeof(*base_algo) + algo->alg_key_len / 8); memcpy(base_algo->alg_name, algo->alg_name, sizeof(base_algo->alg_name)); base_algo->alg_key_len = algo->alg_key_len; memcpy(base_algo->alg_key, algo->alg_key, algo->alg_key_len / 8); __xfrm_algo_print(base_algo, XFRMA_ALG_AEAD, len, fp, prefix, 0); fprintf(fp, " %d", algo->alg_icv_len); fprintf(fp, "%s", _SL_); } static void xfrm_auth_trunc_print(struct xfrm_algo_auth *algo, int len, FILE *fp, const char *prefix) { struct xfrm_algo *base_algo = alloca(sizeof(*base_algo) + algo->alg_key_len / 8); memcpy(base_algo->alg_name, algo->alg_name, sizeof(base_algo->alg_name)); base_algo->alg_key_len = algo->alg_key_len; memcpy(base_algo->alg_key, algo->alg_key, algo->alg_key_len / 8); __xfrm_algo_print(base_algo, XFRMA_ALG_AUTH_TRUNC, len, fp, prefix, 0); fprintf(fp, " %d", algo->alg_trunc_len); fprintf(fp, "%s", _SL_); } static void xfrm_tmpl_print(struct xfrm_user_tmpl *tmpls, int len, FILE *fp, const char *prefix) { int ntmpls = len / sizeof(struct xfrm_user_tmpl); int i; if (ntmpls <= 0) { if (prefix) fputs(prefix, fp); fprintf(fp, "(ERROR \"tmpl\" truncated)"); fprintf(fp, "%s", _SL_); return; } for (i = 0; i < ntmpls; i++) { struct xfrm_user_tmpl *tmpl = &tmpls[i]; if (prefix) fputs(prefix, fp); xfrm_id_info_print(&tmpl->saddr, &tmpl->id, tmpl->mode, tmpl->reqid, tmpl->family, 0, fp, prefix, "tmpl "); if (show_stats > 0 || tmpl->optional) { if (prefix) fputs(prefix, fp); fprintf(fp, "\t"); switch (tmpl->optional) { case 0: if (show_stats > 0) fprintf(fp, "level required "); break; case 1: fprintf(fp, "level use "); break; default: fprintf(fp, "level %u ", tmpl->optional); break; } if (show_stats > 0) fprintf(fp, "share %s ", strxf_share(tmpl->share)); fprintf(fp, "%s", _SL_); } if (show_stats > 0) { if (prefix) fputs(prefix, fp); fprintf(fp, "\t"); fprintf(fp, "%s-mask %s ", strxf_algotype(XFRMA_ALG_CRYPT), strxf_mask32(tmpl->ealgos)); fprintf(fp, "%s-mask %s ", strxf_algotype(XFRMA_ALG_AUTH), strxf_mask32(tmpl->aalgos)); fprintf(fp, "%s-mask %s", strxf_algotype(XFRMA_ALG_COMP), strxf_mask32(tmpl->calgos)); fprintf(fp, "%s", _SL_); } } } static void xfrm_output_mark_print(struct rtattr *tb[], FILE *fp) { __u32 output_mark = rta_getattr_u32(tb[XFRMA_OUTPUT_MARK]); fprintf(fp, "output-mark 0x%x", output_mark); } int xfrm_parse_mark(struct xfrm_mark *mark, int *argcp, char ***argvp) { int argc = *argcp; char **argv = *argvp; NEXT_ARG(); if (get_u32(&mark->v, *argv, 0)) { invarg("MARK value is invalid\n", *argv); } if (argc > 1) NEXT_ARG(); else { /* last entry on parse line */ mark->m = 0xffffffff; goto done; } if (strcmp(*argv, "mask") == 0) { NEXT_ARG(); if (get_u32(&mark->m, *argv, 0)) { invarg("MASK value is invalid\n", *argv); } } else { mark->m = 0xffffffff; PREV_ARG(); } done: *argcp = argc; *argvp = argv; return 0; } void xfrm_xfrma_print(struct rtattr *tb[], __u16 family, FILE *fp, const char *prefix) { if (tb[XFRMA_MARK]) { struct rtattr *rta = tb[XFRMA_MARK]; struct xfrm_mark *m = RTA_DATA(rta); fprintf(fp, "\tmark %#x/%#x ", m->v, m->m); if (tb[XFRMA_OUTPUT_MARK]) xfrm_output_mark_print(tb, fp); fprintf(fp, "%s", _SL_); } else if (tb[XFRMA_OUTPUT_MARK]) { fprintf(fp, "\t"); xfrm_output_mark_print(tb, fp); fprintf(fp, "%s", _SL_); } if (tb[XFRMA_ALG_AUTH] && !tb[XFRMA_ALG_AUTH_TRUNC]) { struct rtattr *rta = tb[XFRMA_ALG_AUTH]; xfrm_algo_print(RTA_DATA(rta), XFRMA_ALG_AUTH, RTA_PAYLOAD(rta), fp, prefix); } if (tb[XFRMA_ALG_AUTH_TRUNC]) { struct rtattr *rta = tb[XFRMA_ALG_AUTH_TRUNC]; xfrm_auth_trunc_print(RTA_DATA(rta), RTA_PAYLOAD(rta), fp, prefix); } if (tb[XFRMA_ALG_AEAD]) { struct rtattr *rta = tb[XFRMA_ALG_AEAD]; xfrm_aead_print(RTA_DATA(rta), RTA_PAYLOAD(rta), fp, prefix); } if (tb[XFRMA_ALG_CRYPT]) { struct rtattr *rta = tb[XFRMA_ALG_CRYPT]; xfrm_algo_print(RTA_DATA(rta), XFRMA_ALG_CRYPT, RTA_PAYLOAD(rta), fp, prefix); } if (tb[XFRMA_ALG_COMP]) { struct rtattr *rta = tb[XFRMA_ALG_COMP]; xfrm_algo_print(RTA_DATA(rta), XFRMA_ALG_COMP, RTA_PAYLOAD(rta), fp, prefix); } if (tb[XFRMA_ENCAP]) { struct xfrm_encap_tmpl *e; if (prefix) fputs(prefix, fp); fprintf(fp, "encap "); if (RTA_PAYLOAD(tb[XFRMA_ENCAP]) < sizeof(*e)) { fprintf(fp, "(ERROR truncated)"); fprintf(fp, "%s", _SL_); return; } e = RTA_DATA(tb[XFRMA_ENCAP]); fprintf(fp, "type "); switch (e->encap_type) { case 1: fprintf(fp, "espinudp-nonike "); break; case 2: fprintf(fp, "espinudp "); break; default: fprintf(fp, "%u ", e->encap_type); break; } fprintf(fp, "sport %u ", ntohs(e->encap_sport)); fprintf(fp, "dport %u ", ntohs(e->encap_dport)); fprintf(fp, "addr %s", rt_addr_n2a(family, sizeof(e->encap_oa), &e->encap_oa)); fprintf(fp, "%s", _SL_); } if (tb[XFRMA_TMPL]) { struct rtattr *rta = tb[XFRMA_TMPL]; xfrm_tmpl_print(RTA_DATA(rta), RTA_PAYLOAD(rta), fp, prefix); } if (tb[XFRMA_COADDR]) { const xfrm_address_t *coa; if (prefix) fputs(prefix, fp); fprintf(fp, "coa "); coa = RTA_DATA(tb[XFRMA_COADDR]); if (RTA_PAYLOAD(tb[XFRMA_COADDR]) < sizeof(*coa)) { fprintf(fp, "(ERROR truncated)"); fprintf(fp, "%s", _SL_); return; } fprintf(fp, "%s", rt_addr_n2a(family, sizeof(*coa), coa)); fprintf(fp, "%s", _SL_); } if (tb[XFRMA_LASTUSED]) { __u64 lastused; if (prefix) fputs(prefix, fp); fprintf(fp, "lastused "); if (RTA_PAYLOAD(tb[XFRMA_LASTUSED]) < sizeof(lastused)) { fprintf(fp, "(ERROR truncated)"); fprintf(fp, "%s", _SL_); return; } lastused = rta_getattr_u64(tb[XFRMA_LASTUSED]); fprintf(fp, "%s", strxf_time(lastused)); fprintf(fp, "%s", _SL_); } if (tb[XFRMA_REPLAY_VAL]) { struct xfrm_replay_state *replay; if (prefix) fputs(prefix, fp); fprintf(fp, "anti-replay context: "); if (RTA_PAYLOAD(tb[XFRMA_REPLAY_VAL]) < sizeof(*replay)) { fprintf(fp, "(ERROR truncated)"); fprintf(fp, "%s", _SL_); return; } replay = RTA_DATA(tb[XFRMA_REPLAY_VAL]); fprintf(fp, "seq 0x%x, oseq 0x%x, bitmap 0x%08x", replay->seq, replay->oseq, replay->bitmap); fprintf(fp, "%s", _SL_); } if (tb[XFRMA_REPLAY_ESN_VAL]) { struct xfrm_replay_state_esn *replay; unsigned int i, j; if (prefix) fputs(prefix, fp); fprintf(fp, "anti-replay esn context:"); if (RTA_PAYLOAD(tb[XFRMA_REPLAY_ESN_VAL]) < sizeof(*replay)) { fprintf(fp, "(ERROR truncated)"); fprintf(fp, "%s", _SL_); return; } fprintf(fp, "%s", _SL_); replay = RTA_DATA(tb[XFRMA_REPLAY_ESN_VAL]); if (prefix) fputs(prefix, fp); fprintf(fp, " seq-hi 0x%x, seq 0x%x, oseq-hi 0x%0x, oseq 0x%0x", replay->seq_hi, replay->seq, replay->oseq_hi, replay->oseq); fprintf(fp, "%s", _SL_); if (prefix) fputs(prefix, fp); fprintf(fp, " replay_window %u, bitmap-length %u", replay->replay_window, replay->bmp_len); for (i = replay->bmp_len, j = 0; i; i--) { if (j++ % 8 == 0) { fprintf(fp, "%s", _SL_); if (prefix) fputs(prefix, fp); fprintf(fp, " "); } fprintf(fp, "%08x ", replay->bmp[i - 1]); } fprintf(fp, "%s", _SL_); } if (tb[XFRMA_OFFLOAD_DEV]) { struct xfrm_user_offload *xuo; if (prefix) fputs(prefix, fp); fprintf(fp, "crypto offload parameters: "); if (RTA_PAYLOAD(tb[XFRMA_OFFLOAD_DEV]) < sizeof(*xuo)) { fprintf(fp, "(ERROR truncated)"); fprintf(fp, "%s", _SL_); return; } xuo = (struct xfrm_user_offload *) RTA_DATA(tb[XFRMA_OFFLOAD_DEV]); fprintf(fp, "dev %s dir %s", ll_index_to_name(xuo->ifindex), (xuo->flags & XFRM_OFFLOAD_INBOUND) ? "in" : "out"); fprintf(fp, "%s", _SL_); } } static int xfrm_selector_iszero(struct xfrm_selector *s) { struct xfrm_selector s0 = {}; return (memcmp(&s0, s, sizeof(s0)) == 0); } void xfrm_state_info_print(struct xfrm_usersa_info *xsinfo, struct rtattr *tb[], FILE *fp, const char *prefix, const char *title) { char buf[STRBUF_SIZE] = {}; int force_spi = xfrm_xfrmproto_is_ipsec(xsinfo->id.proto); xfrm_id_info_print(&xsinfo->saddr, &xsinfo->id, xsinfo->mode, xsinfo->reqid, xsinfo->family, force_spi, fp, prefix, title); if (prefix) strlcat(buf, prefix, sizeof(buf)); strlcat(buf, "\t", sizeof(buf)); fputs(buf, fp); fprintf(fp, "replay-window %u ", xsinfo->replay_window); if (show_stats > 0) fprintf(fp, "seq 0x%08u ", xsinfo->seq); if (show_stats > 0 || xsinfo->flags) { __u8 flags = xsinfo->flags; fprintf(fp, "flag "); XFRM_FLAG_PRINT(fp, flags, XFRM_STATE_NOECN, "noecn"); XFRM_FLAG_PRINT(fp, flags, XFRM_STATE_DECAP_DSCP, "decap-dscp"); XFRM_FLAG_PRINT(fp, flags, XFRM_STATE_NOPMTUDISC, "nopmtudisc"); XFRM_FLAG_PRINT(fp, flags, XFRM_STATE_WILDRECV, "wildrecv"); XFRM_FLAG_PRINT(fp, flags, XFRM_STATE_ICMP, "icmp"); XFRM_FLAG_PRINT(fp, flags, XFRM_STATE_AF_UNSPEC, "af-unspec"); XFRM_FLAG_PRINT(fp, flags, XFRM_STATE_ALIGN4, "align4"); XFRM_FLAG_PRINT(fp, flags, XFRM_STATE_ESN, "esn"); if (flags) fprintf(fp, "%x", flags); } if (show_stats > 0 && tb[XFRMA_SA_EXTRA_FLAGS]) { __u32 extra_flags = rta_getattr_u32(tb[XFRMA_SA_EXTRA_FLAGS]); fprintf(fp, "extra_flag "); XFRM_FLAG_PRINT(fp, extra_flags, XFRM_SA_XFLAG_DONT_ENCAP_DSCP, "dont-encap-dscp"); if (extra_flags) fprintf(fp, "%x", extra_flags); } if (show_stats > 0) fprintf(fp, " (0x%s)", strxf_mask8(xsinfo->flags)); fprintf(fp, "%s", _SL_); xfrm_xfrma_print(tb, xsinfo->family, fp, buf); if (!xfrm_selector_iszero(&xsinfo->sel)) { char sbuf[STRBUF_SIZE]; memcpy(sbuf, buf, sizeof(sbuf)); strlcat(sbuf, "sel ", sizeof(sbuf)); xfrm_selector_print(&xsinfo->sel, xsinfo->family, fp, sbuf); } if (show_stats > 0) { xfrm_lifetime_print(&xsinfo->lft, &xsinfo->curlft, fp, buf); xfrm_stats_print(&xsinfo->stats, fp, buf); } if (tb[XFRMA_SEC_CTX]) { struct xfrm_user_sec_ctx *sctx; fprintf(fp, "\tsecurity context "); if (RTA_PAYLOAD(tb[XFRMA_SEC_CTX]) < sizeof(*sctx)) fprintf(fp, "(ERROR truncated)"); sctx = RTA_DATA(tb[XFRMA_SEC_CTX]); fprintf(fp, "%s %s", (char *)(sctx + 1), _SL_); } } void xfrm_policy_info_print(struct xfrm_userpolicy_info *xpinfo, struct rtattr *tb[], FILE *fp, const char *prefix, const char *title) { char buf[STRBUF_SIZE] = {}; xfrm_selector_print(&xpinfo->sel, preferred_family, fp, title); if (tb[XFRMA_SEC_CTX]) { struct xfrm_user_sec_ctx *sctx; fprintf(fp, "\tsecurity context "); if (RTA_PAYLOAD(tb[XFRMA_SEC_CTX]) < sizeof(*sctx)) fprintf(fp, "(ERROR truncated)"); sctx = RTA_DATA(tb[XFRMA_SEC_CTX]); fprintf(fp, "%s ", (char *)(sctx + 1)); fprintf(fp, "%s", _SL_); } if (prefix) strlcat(buf, prefix, sizeof(buf)); strlcat(buf, "\t", sizeof(buf)); fputs(buf, fp); if (xpinfo->dir >= XFRM_POLICY_MAX) { xpinfo->dir -= XFRM_POLICY_MAX; fprintf(fp, "socket "); } else fprintf(fp, "dir "); switch (xpinfo->dir) { case XFRM_POLICY_IN: fprintf(fp, "in"); break; case XFRM_POLICY_OUT: fprintf(fp, "out"); break; case XFRM_POLICY_FWD: fprintf(fp, "fwd"); break; default: fprintf(fp, "%u", xpinfo->dir); break; } fprintf(fp, " "); switch (xpinfo->action) { case XFRM_POLICY_ALLOW: if (show_stats > 0) fprintf(fp, "action allow "); break; case XFRM_POLICY_BLOCK: fprintf(fp, "action block "); break; default: fprintf(fp, "action %u ", xpinfo->action); break; } if (show_stats) fprintf(fp, "index %u ", xpinfo->index); fprintf(fp, "priority %u ", xpinfo->priority); if (tb[XFRMA_POLICY_TYPE]) { struct xfrm_userpolicy_type *upt; fprintf(fp, "ptype "); if (RTA_PAYLOAD(tb[XFRMA_POLICY_TYPE]) < sizeof(*upt)) fprintf(fp, "(ERROR truncated)"); upt = RTA_DATA(tb[XFRMA_POLICY_TYPE]); fprintf(fp, "%s ", strxf_ptype(upt->type)); } if (show_stats > 0) fprintf(fp, "share %s ", strxf_share(xpinfo->share)); if (show_stats > 0 || xpinfo->flags) { __u8 flags = xpinfo->flags; fprintf(fp, "flag "); XFRM_FLAG_PRINT(fp, flags, XFRM_POLICY_LOCALOK, "localok"); XFRM_FLAG_PRINT(fp, flags, XFRM_POLICY_ICMP, "icmp"); if (flags) fprintf(fp, "%x", flags); } if (show_stats > 0) fprintf(fp, " (0x%s)", strxf_mask8(xpinfo->flags)); fprintf(fp, "%s", _SL_); if (show_stats > 0) xfrm_lifetime_print(&xpinfo->lft, &xpinfo->curlft, fp, buf); xfrm_xfrma_print(tb, xpinfo->sel.family, fp, buf); } int xfrm_id_parse(xfrm_address_t *saddr, struct xfrm_id *id, __u16 *family, int loose, int *argcp, char ***argvp) { int argc = *argcp; char **argv = *argvp; inet_prefix dst = {}; inet_prefix src = {}; while (1) { if (strcmp(*argv, "src") == 0) { NEXT_ARG(); get_prefix(&src, *argv, preferred_family); if (src.family == AF_UNSPEC) invarg("value after \"src\" has an unrecognized address family", *argv); if (family) *family = src.family; memcpy(saddr, &src.data, sizeof(*saddr)); filter.id_src_mask = src.bitlen; } else if (strcmp(*argv, "dst") == 0) { NEXT_ARG(); get_prefix(&dst, *argv, preferred_family); if (dst.family == AF_UNSPEC) invarg("value after \"dst\" has an unrecognized address family", *argv); if (family) *family = dst.family; memcpy(&id->daddr, &dst.data, sizeof(id->daddr)); filter.id_dst_mask = dst.bitlen; } else if (strcmp(*argv, "proto") == 0) { int ret; NEXT_ARG(); ret = xfrm_xfrmproto_getbyname(*argv); if (ret < 0) invarg("XFRM-PROTO value is invalid", *argv); id->proto = (__u8)ret; filter.id_proto_mask = XFRM_FILTER_MASK_FULL; } else if (strcmp(*argv, "spi") == 0) { NEXT_ARG(); if (get_be32(&id->spi, *argv, 0)) invarg("SPI value is invalid", *argv); filter.id_spi_mask = XFRM_FILTER_MASK_FULL; } else { PREV_ARG(); /* back track */ break; } if (!NEXT_ARG_OK()) break; NEXT_ARG(); } if (src.family && dst.family && (src.family != dst.family)) invarg("the same address family is required between values after \"src\" and \"dst\"", *argv); if (id->spi && id->proto) { if (xfrm_xfrmproto_is_ro(id->proto)) { fprintf(stderr, "\"spi\" is invalid with XFRM-PROTO value \"%s\"\n", strxf_xfrmproto(id->proto)); exit(1); } else if (id->proto == IPPROTO_COMP && ntohl(id->spi) >= 0x10000) { fprintf(stderr, "SPI value is too large with XFRM-PROTO value \"%s\"\n", strxf_xfrmproto(id->proto)); exit(1); } } if (loose == 0 && id->proto == 0) missarg("XFRM-PROTO"); if (argc == *argcp) missarg("ID"); *argcp = argc; *argvp = argv; return 0; } int xfrm_mode_parse(__u8 *mode, int *argcp, char ***argvp) { int argc = *argcp; char **argv = *argvp; if (matches(*argv, "transport") == 0) *mode = XFRM_MODE_TRANSPORT; else if (matches(*argv, "tunnel") == 0) *mode = XFRM_MODE_TUNNEL; else if (matches(*argv, "ro") == 0) *mode = XFRM_MODE_ROUTEOPTIMIZATION; else if (matches(*argv, "in_trigger") == 0) *mode = XFRM_MODE_IN_TRIGGER; else if (matches(*argv, "beet") == 0) *mode = XFRM_MODE_BEET; else invarg("MODE value is invalid", *argv); *argcp = argc; *argvp = argv; return 0; } int xfrm_encap_type_parse(__u16 *type, int *argcp, char ***argvp) { int argc = *argcp; char **argv = *argvp; if (strcmp(*argv, "espinudp-nonike") == 0) *type = 1; else if (strcmp(*argv, "espinudp") == 0) *type = 2; else invarg("ENCAP-TYPE value is invalid", *argv); *argcp = argc; *argvp = argv; return 0; } /* NOTE: reqid is used by host-byte order */ int xfrm_reqid_parse(__u32 *reqid, int *argcp, char ***argvp) { int argc = *argcp; char **argv = *argvp; if (get_u32(reqid, *argv, 0)) invarg("REQID value is invalid", *argv); *argcp = argc; *argvp = argv; return 0; } static int xfrm_selector_upspec_parse(struct xfrm_selector *sel, int *argcp, char ***argvp) { int argc = *argcp; char **argv = *argvp; char *sportp = NULL; char *dportp = NULL; char *typep = NULL; char *codep = NULL; char *grekey = NULL; while (1) { if (strcmp(*argv, "proto") == 0) { __u8 upspec; NEXT_ARG(); if (strcmp(*argv, "any") == 0) upspec = 0; else { struct protoent *pp; pp = getprotobyname(*argv); if (pp) upspec = pp->p_proto; else { if (get_u8(&upspec, *argv, 0)) invarg("PROTO value is invalid", *argv); } } sel->proto = upspec; filter.upspec_proto_mask = XFRM_FILTER_MASK_FULL; } else if (strcmp(*argv, "sport") == 0) { sportp = *argv; NEXT_ARG(); if (get_be16(&sel->sport, *argv, 0)) invarg("value after \"sport\" is invalid", *argv); if (sel->sport) sel->sport_mask = ~((__u16)0); filter.upspec_sport_mask = XFRM_FILTER_MASK_FULL; } else if (strcmp(*argv, "dport") == 0) { dportp = *argv; NEXT_ARG(); if (get_be16(&sel->dport, *argv, 0)) invarg("value after \"dport\" is invalid", *argv); if (sel->dport) sel->dport_mask = ~((__u16)0); filter.upspec_dport_mask = XFRM_FILTER_MASK_FULL; } else if (strcmp(*argv, "type") == 0) { typep = *argv; NEXT_ARG(); if (get_u16(&sel->sport, *argv, 0) || (sel->sport & ~((__u16)0xff))) invarg("value after \"type\" is invalid", *argv); sel->sport = htons(sel->sport); sel->sport_mask = ~((__u16)0); filter.upspec_sport_mask = XFRM_FILTER_MASK_FULL; } else if (strcmp(*argv, "code") == 0) { codep = *argv; NEXT_ARG(); if (get_u16(&sel->dport, *argv, 0) || (sel->dport & ~((__u16)0xff))) invarg("value after \"code\" is invalid", *argv); sel->dport = htons(sel->dport); sel->dport_mask = ~((__u16)0); filter.upspec_dport_mask = XFRM_FILTER_MASK_FULL; } else if (strcmp(*argv, "key") == 0) { unsigned int uval; grekey = *argv; NEXT_ARG(); if (strchr(*argv, '.')) uval = htonl(get_addr32(*argv)); else { if (get_unsigned(&uval, *argv, 0) < 0) { fprintf(stderr, "value after \"key\" is invalid\n"); exit(-1); } } sel->sport = htons(uval >> 16); sel->dport = htons(uval & 0xffff); sel->sport_mask = ~((__u16)0); sel->dport_mask = ~((__u16)0); filter.upspec_dport_mask = XFRM_FILTER_MASK_FULL; } else { PREV_ARG(); /* back track */ break; } if (!NEXT_ARG_OK()) break; NEXT_ARG(); } if (argc == *argcp) missarg("UPSPEC"); if (sportp || dportp) { switch (sel->proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_SCTP: case IPPROTO_DCCP: case IPPROTO_IP: /* to allow shared SA for different protocols */ break; default: fprintf(stderr, "\"sport\" and \"dport\" are invalid with PROTO value \"%s\"\n", strxf_proto(sel->proto)); exit(1); } } if (typep || codep) { switch (sel->proto) { case IPPROTO_ICMP: case IPPROTO_ICMPV6: case IPPROTO_MH: break; default: fprintf(stderr, "\"type\" and \"code\" are invalid with PROTO value \"%s\"\n", strxf_proto(sel->proto)); exit(1); } } if (grekey) { switch (sel->proto) { case IPPROTO_GRE: break; default: fprintf(stderr, "\"key\" is invalid with PROTO value \"%s\"\n", strxf_proto(sel->proto)); exit(1); } } *argcp = argc; *argvp = argv; return 0; } int xfrm_selector_parse(struct xfrm_selector *sel, int *argcp, char ***argvp) { int argc = *argcp; char **argv = *argvp; inet_prefix dst = {}; inet_prefix src = {}; char *upspecp = NULL; while (1) { if (strcmp(*argv, "src") == 0) { NEXT_ARG(); get_prefix(&src, *argv, preferred_family); if (src.family == AF_UNSPEC) invarg("value after \"src\" has an unrecognized address family", *argv); sel->family = src.family; memcpy(&sel->saddr, &src.data, sizeof(sel->saddr)); sel->prefixlen_s = src.bitlen; filter.sel_src_mask = src.bitlen; } else if (strcmp(*argv, "dst") == 0) { NEXT_ARG(); get_prefix(&dst, *argv, preferred_family); if (dst.family == AF_UNSPEC) invarg("value after \"dst\" has an unrecognized address family", *argv); sel->family = dst.family; memcpy(&sel->daddr, &dst.data, sizeof(sel->daddr)); sel->prefixlen_d = dst.bitlen; filter.sel_dst_mask = dst.bitlen; } else if (strcmp(*argv, "dev") == 0) { int ifindex; NEXT_ARG(); if (strcmp(*argv, "none") == 0) ifindex = 0; else { ifindex = ll_name_to_index(*argv); if (ifindex <= 0) invarg("DEV value is invalid", *argv); } sel->ifindex = ifindex; filter.sel_dev_mask = XFRM_FILTER_MASK_FULL; } else { if (upspecp) { PREV_ARG(); /* back track */ break; } else { upspecp = *argv; xfrm_selector_upspec_parse(sel, &argc, &argv); } } if (!NEXT_ARG_OK()) break; NEXT_ARG(); } if (src.family && dst.family && (src.family != dst.family)) invarg("the same address family is required between values after \"src\" and \"dst\"", *argv); if (argc == *argcp) missarg("SELECTOR"); *argcp = argc; *argvp = argv; return 0; } int xfrm_lifetime_cfg_parse(struct xfrm_lifetime_cfg *lft, int *argcp, char ***argvp) { int argc = *argcp; char **argv = *argvp; int ret; if (strcmp(*argv, "time-soft") == 0) { NEXT_ARG(); ret = get_u64(&lft->soft_add_expires_seconds, *argv, 0); if (ret) invarg("value after \"time-soft\" is invalid", *argv); } else if (strcmp(*argv, "time-hard") == 0) { NEXT_ARG(); ret = get_u64(&lft->hard_add_expires_seconds, *argv, 0); if (ret) invarg("value after \"time-hard\" is invalid", *argv); } else if (strcmp(*argv, "time-use-soft") == 0) { NEXT_ARG(); ret = get_u64(&lft->soft_use_expires_seconds, *argv, 0); if (ret) invarg("value after \"time-use-soft\" is invalid", *argv); } else if (strcmp(*argv, "time-use-hard") == 0) { NEXT_ARG(); ret = get_u64(&lft->hard_use_expires_seconds, *argv, 0); if (ret) invarg("value after \"time-use-hard\" is invalid", *argv); } else if (strcmp(*argv, "byte-soft") == 0) { NEXT_ARG(); ret = get_u64(&lft->soft_byte_limit, *argv, 0); if (ret) invarg("value after \"byte-soft\" is invalid", *argv); } else if (strcmp(*argv, "byte-hard") == 0) { NEXT_ARG(); ret = get_u64(&lft->hard_byte_limit, *argv, 0); if (ret) invarg("value after \"byte-hard\" is invalid", *argv); } else if (strcmp(*argv, "packet-soft") == 0) { NEXT_ARG(); ret = get_u64(&lft->soft_packet_limit, *argv, 0); if (ret) invarg("value after \"packet-soft\" is invalid", *argv); } else if (strcmp(*argv, "packet-hard") == 0) { NEXT_ARG(); ret = get_u64(&lft->hard_packet_limit, *argv, 0); if (ret) invarg("value after \"packet-hard\" is invalid", *argv); } else invarg("LIMIT value is invalid", *argv); *argcp = argc; *argvp = argv; return 0; } int do_xfrm(int argc, char **argv) { memset(&filter, 0, sizeof(filter)); if (argc < 1) usage(); if (matches(*argv, "state") == 0 || matches(*argv, "sa") == 0) return do_xfrm_state(argc-1, argv+1); else if (matches(*argv, "policy") == 0) return do_xfrm_policy(argc-1, argv+1); else if (matches(*argv, "monitor") == 0) return do_xfrm_monitor(argc-1, argv+1); else if (matches(*argv, "help") == 0) { usage(); fprintf(stderr, "xfrm Object \"%s\" is unknown.\n", *argv); exit(-1); } usage(); }