// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ********************************************************************** * Copyright (c) 2003-2013, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Author: Alan Liu * Created: July 21 2003 * Since: ICU 2.8 ********************************************************************** */ #include "utypeinfo.h" // for 'typeid' to work #include "olsontz.h" #if !UCONFIG_NO_FORMATTING #include "unicode/ures.h" #include "unicode/simpletz.h" #include "unicode/gregocal.h" #include "gregoimp.h" #include "cmemory.h" #include "uassert.h" #include "uvector.h" #include <float.h> // DBL_MAX #include "uresimp.h" // struct UResourceBundle #include "zonemeta.h" #include "umutex.h" #ifdef U_DEBUG_TZ # include <stdio.h> # include "uresimp.h" // for debugging static void debug_tz_loc(const char *f, int32_t l) { fprintf(stderr, "%s:%d: ", f, l); } static void debug_tz_msg(const char *pat, ...) { va_list ap; va_start(ap, pat); vfprintf(stderr, pat, ap); fflush(stderr); } // must use double parens, i.e.: U_DEBUG_TZ_MSG(("four is: %d",4)); #define U_DEBUG_TZ_MSG(x) {debug_tz_loc(__FILE__,__LINE__);debug_tz_msg x;} #else #define U_DEBUG_TZ_MSG(x) #endif static UBool arrayEqual(const void *a1, const void *a2, int32_t size) { if (a1 == NULL && a2 == NULL) { return TRUE; } if ((a1 != NULL && a2 == NULL) || (a1 == NULL && a2 != NULL)) { return FALSE; } if (a1 == a2) { return TRUE; } return (uprv_memcmp(a1, a2, size) == 0); } U_NAMESPACE_BEGIN #define kTRANS "trans" #define kTRANSPRE32 "transPre32" #define kTRANSPOST32 "transPost32" #define kTYPEOFFSETS "typeOffsets" #define kTYPEMAP "typeMap" #define kLINKS "links" #define kFINALRULE "finalRule" #define kFINALRAW "finalRaw" #define kFINALYEAR "finalYear" #define SECONDS_PER_DAY (24*60*60) static const int32_t ZEROS[] = {0,0}; UOBJECT_DEFINE_RTTI_IMPLEMENTATION(OlsonTimeZone) /** * Default constructor. Creates a time zone with an empty ID and * a fixed GMT offset of zero. */ /*OlsonTimeZone::OlsonTimeZone() : finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0), transitionRulesInitialized(FALSE) { clearTransitionRules(); constructEmpty(); }*/ /** * Construct a GMT+0 zone with no transitions. This is done when a * constructor fails so the resultant object is well-behaved. */ void OlsonTimeZone::constructEmpty() { canonicalID = NULL; transitionCountPre32 = transitionCount32 = transitionCountPost32 = 0; transitionTimesPre32 = transitionTimes32 = transitionTimesPost32 = NULL; typeMapData = NULL; typeCount = 1; typeOffsets = ZEROS; finalZone = NULL; } /** * Construct from a resource bundle * @param top the top-level zoneinfo resource bundle. This is used * to lookup the rule that `res' may refer to, if there is one. * @param res the resource bundle of the zone to be constructed * @param ec input-output error code */ OlsonTimeZone::OlsonTimeZone(const UResourceBundle* top, const UResourceBundle* res, const UnicodeString& tzid, UErrorCode& ec) : BasicTimeZone(tzid), finalZone(NULL) { clearTransitionRules(); U_DEBUG_TZ_MSG(("OlsonTimeZone(%s)\n", ures_getKey((UResourceBundle*)res))); if ((top == NULL || res == NULL) && U_SUCCESS(ec)) { ec = U_ILLEGAL_ARGUMENT_ERROR; } if (U_SUCCESS(ec)) { // TODO -- clean up -- Doesn't work if res points to an alias // // TODO remove nonconst casts below when ures_* API is fixed // setID(ures_getKey((UResourceBundle*) res)); // cast away const int32_t len; UResourceBundle r; ures_initStackObject(&r); // Pre-32bit second transitions ures_getByKey(res, kTRANSPRE32, &r, &ec); transitionTimesPre32 = ures_getIntVector(&r, &len, &ec); transitionCountPre32 = static_cast<int16_t>(len >> 1); if (ec == U_MISSING_RESOURCE_ERROR) { // No pre-32bit transitions transitionTimesPre32 = NULL; transitionCountPre32 = 0; ec = U_ZERO_ERROR; } else if (U_SUCCESS(ec) && (len < 0 || len > 0x7FFF || (len & 1) != 0) /* len must be even */) { ec = U_INVALID_FORMAT_ERROR; } // 32bit second transitions ures_getByKey(res, kTRANS, &r, &ec); transitionTimes32 = ures_getIntVector(&r, &len, &ec); transitionCount32 = static_cast<int16_t>(len); if (ec == U_MISSING_RESOURCE_ERROR) { // No 32bit transitions transitionTimes32 = NULL; transitionCount32 = 0; ec = U_ZERO_ERROR; } else if (U_SUCCESS(ec) && (len < 0 || len > 0x7FFF)) { ec = U_INVALID_FORMAT_ERROR; } // Post-32bit second transitions ures_getByKey(res, kTRANSPOST32, &r, &ec); transitionTimesPost32 = ures_getIntVector(&r, &len, &ec); transitionCountPost32 = static_cast<int16_t>(len >> 1); if (ec == U_MISSING_RESOURCE_ERROR) { // No pre-32bit transitions transitionTimesPost32 = NULL; transitionCountPost32 = 0; ec = U_ZERO_ERROR; } else if (U_SUCCESS(ec) && (len < 0 || len > 0x7FFF || (len & 1) != 0) /* len must be even */) { ec = U_INVALID_FORMAT_ERROR; } // Type offsets list must be of even size, with size >= 2 ures_getByKey(res, kTYPEOFFSETS, &r, &ec); typeOffsets = ures_getIntVector(&r, &len, &ec); if (U_SUCCESS(ec) && (len < 2 || len > 0x7FFE || (len & 1) != 0)) { ec = U_INVALID_FORMAT_ERROR; } typeCount = (int16_t) len >> 1; // Type map data must be of the same size as the transition count typeMapData = NULL; if (transitionCount() > 0) { ures_getByKey(res, kTYPEMAP, &r, &ec); typeMapData = ures_getBinary(&r, &len, &ec); if (ec == U_MISSING_RESOURCE_ERROR) { // no type mapping data ec = U_INVALID_FORMAT_ERROR; } else if (U_SUCCESS(ec) && len != transitionCount()) { ec = U_INVALID_FORMAT_ERROR; } } // Process final rule and data, if any const UChar *ruleIdUStr = ures_getStringByKey(res, kFINALRULE, &len, &ec); ures_getByKey(res, kFINALRAW, &r, &ec); int32_t ruleRaw = ures_getInt(&r, &ec); ures_getByKey(res, kFINALYEAR, &r, &ec); int32_t ruleYear = ures_getInt(&r, &ec); if (U_SUCCESS(ec)) { UnicodeString ruleID(TRUE, ruleIdUStr, len); UResourceBundle *rule = TimeZone::loadRule(top, ruleID, NULL, ec); const int32_t *ruleData = ures_getIntVector(rule, &len, &ec); if (U_SUCCESS(ec) && len == 11) { UnicodeString emptyStr; finalZone = new SimpleTimeZone( ruleRaw * U_MILLIS_PER_SECOND, emptyStr, (int8_t)ruleData[0], (int8_t)ruleData[1], (int8_t)ruleData[2], ruleData[3] * U_MILLIS_PER_SECOND, (SimpleTimeZone::TimeMode) ruleData[4], (int8_t)ruleData[5], (int8_t)ruleData[6], (int8_t)ruleData[7], ruleData[8] * U_MILLIS_PER_SECOND, (SimpleTimeZone::TimeMode) ruleData[9], ruleData[10] * U_MILLIS_PER_SECOND, ec); if (finalZone == NULL) { ec = U_MEMORY_ALLOCATION_ERROR; } else { finalStartYear = ruleYear; // Note: Setting finalStartYear to the finalZone is problematic. When a date is around // year boundary, SimpleTimeZone may return false result when DST is observed at the // beginning of year. We could apply safe margin (day or two), but when one of recurrent // rules falls around year boundary, it could return false result. Without setting the // start year, finalZone works fine around the year boundary of the start year. // finalZone->setStartYear(finalStartYear); // Compute the millis for Jan 1, 0:00 GMT of the finalYear // Note: finalStartMillis is used for detecting either if // historic transition data or finalZone to be used. In an // extreme edge case - for example, two transitions fall into // small windows of time around the year boundary, this may // result incorrect offset computation. But I think it will // never happen practically. Yoshito - Feb 20, 2010 finalStartMillis = Grego::fieldsToDay(finalStartYear, 0, 1) * U_MILLIS_PER_DAY; } } else { ec = U_INVALID_FORMAT_ERROR; } ures_close(rule); } else if (ec == U_MISSING_RESOURCE_ERROR) { // No final zone ec = U_ZERO_ERROR; } ures_close(&r); // initialize canonical ID canonicalID = ZoneMeta::getCanonicalCLDRID(tzid, ec); } if (U_FAILURE(ec)) { constructEmpty(); } } /** * Copy constructor */ OlsonTimeZone::OlsonTimeZone(const OlsonTimeZone& other) : BasicTimeZone(other), finalZone(0) { *this = other; } /** * Assignment operator */ OlsonTimeZone& OlsonTimeZone::operator=(const OlsonTimeZone& other) { canonicalID = other.canonicalID; transitionTimesPre32 = other.transitionTimesPre32; transitionTimes32 = other.transitionTimes32; transitionTimesPost32 = other.transitionTimesPost32; transitionCountPre32 = other.transitionCountPre32; transitionCount32 = other.transitionCount32; transitionCountPost32 = other.transitionCountPost32; typeCount = other.typeCount; typeOffsets = other.typeOffsets; typeMapData = other.typeMapData; delete finalZone; finalZone = (other.finalZone != 0) ? (SimpleTimeZone*) other.finalZone->clone() : 0; finalStartYear = other.finalStartYear; finalStartMillis = other.finalStartMillis; clearTransitionRules(); return *this; } /** * Destructor */ OlsonTimeZone::~OlsonTimeZone() { deleteTransitionRules(); delete finalZone; } /** * Returns true if the two TimeZone objects are equal. */ UBool OlsonTimeZone::operator==(const TimeZone& other) const { return ((this == &other) || (typeid(*this) == typeid(other) && TimeZone::operator==(other) && hasSameRules(other))); } /** * TimeZone API. */ TimeZone* OlsonTimeZone::clone() const { return new OlsonTimeZone(*this); } /** * TimeZone API. */ int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month, int32_t dom, uint8_t dow, int32_t millis, UErrorCode& ec) const { if (month < UCAL_JANUARY || month > UCAL_DECEMBER) { if (U_SUCCESS(ec)) { ec = U_ILLEGAL_ARGUMENT_ERROR; } return 0; } else { return getOffset(era, year, month, dom, dow, millis, Grego::monthLength(year, month), ec); } } /** * TimeZone API. */ int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month, int32_t dom, uint8_t dow, int32_t millis, int32_t monthLength, UErrorCode& ec) const { if (U_FAILURE(ec)) { return 0; } if ((era != GregorianCalendar::AD && era != GregorianCalendar::BC) || month < UCAL_JANUARY || month > UCAL_DECEMBER || dom < 1 || dom > monthLength || dow < UCAL_SUNDAY || dow > UCAL_SATURDAY || millis < 0 || millis >= U_MILLIS_PER_DAY || monthLength < 28 || monthLength > 31) { ec = U_ILLEGAL_ARGUMENT_ERROR; return 0; } if (era == GregorianCalendar::BC) { year = -year; } if (finalZone != NULL && year >= finalStartYear) { return finalZone->getOffset(era, year, month, dom, dow, millis, monthLength, ec); } // Compute local epoch millis from input fields UDate date = (UDate)(Grego::fieldsToDay(year, month, dom) * U_MILLIS_PER_DAY + millis); int32_t rawoff, dstoff; getHistoricalOffset(date, TRUE, kDaylight, kStandard, rawoff, dstoff); return rawoff + dstoff; } /** * TimeZone API. */ void OlsonTimeZone::getOffset(UDate date, UBool local, int32_t& rawoff, int32_t& dstoff, UErrorCode& ec) const { if (U_FAILURE(ec)) { return; } if (finalZone != NULL && date >= finalStartMillis) { finalZone->getOffset(date, local, rawoff, dstoff, ec); } else { getHistoricalOffset(date, local, kFormer, kLatter, rawoff, dstoff); } } void OlsonTimeZone::getOffsetFromLocal(UDate date, int32_t nonExistingTimeOpt, int32_t duplicatedTimeOpt, int32_t& rawoff, int32_t& dstoff, UErrorCode& ec) const { if (U_FAILURE(ec)) { return; } if (finalZone != NULL && date >= finalStartMillis) { finalZone->getOffsetFromLocal(date, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff, ec); } else { getHistoricalOffset(date, TRUE, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff); } } /** * TimeZone API. */ void OlsonTimeZone::setRawOffset(int32_t /*offsetMillis*/) { // We don't support this operation, since OlsonTimeZones are // immutable (except for the ID, which is in the base class). // Nothing to do! } /** * TimeZone API. */ int32_t OlsonTimeZone::getRawOffset() const { UErrorCode ec = U_ZERO_ERROR; int32_t raw, dst; getOffset((double) uprv_getUTCtime() * U_MILLIS_PER_SECOND, FALSE, raw, dst, ec); return raw; } #if defined U_DEBUG_TZ void printTime(double ms) { int32_t year, month, dom, dow; double millis=0; double days = ClockMath::floorDivide(((double)ms), (double)U_MILLIS_PER_DAY, millis); Grego::dayToFields(days, year, month, dom, dow); U_DEBUG_TZ_MSG((" getHistoricalOffset: time %.1f (%04d.%02d.%02d+%.1fh)\n", ms, year, month+1, dom, (millis/kOneHour))); } #endif int64_t OlsonTimeZone::transitionTimeInSeconds(int16_t transIdx) const { U_ASSERT(transIdx >= 0 && transIdx < transitionCount()); if (transIdx < transitionCountPre32) { return (((int64_t)((uint32_t)transitionTimesPre32[transIdx << 1])) << 32) | ((int64_t)((uint32_t)transitionTimesPre32[(transIdx << 1) + 1])); } transIdx -= transitionCountPre32; if (transIdx < transitionCount32) { return (int64_t)transitionTimes32[transIdx]; } transIdx -= transitionCount32; return (((int64_t)((uint32_t)transitionTimesPost32[transIdx << 1])) << 32) | ((int64_t)((uint32_t)transitionTimesPost32[(transIdx << 1) + 1])); } // Maximum absolute offset in seconds (86400 seconds = 1 day) // getHistoricalOffset uses this constant as safety margin of // quick zone transition checking. #define MAX_OFFSET_SECONDS 86400 void OlsonTimeZone::getHistoricalOffset(UDate date, UBool local, int32_t NonExistingTimeOpt, int32_t DuplicatedTimeOpt, int32_t& rawoff, int32_t& dstoff) const { U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst)\n", date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt)); #if defined U_DEBUG_TZ printTime(date*1000.0); #endif int16_t transCount = transitionCount(); if (transCount > 0) { double sec = uprv_floor(date / U_MILLIS_PER_SECOND); if (!local && sec < transitionTimeInSeconds(0)) { // Before the first transition time rawoff = initialRawOffset() * U_MILLIS_PER_SECOND; dstoff = initialDstOffset() * U_MILLIS_PER_SECOND; } else { // Linear search from the end is the fastest approach, since // most lookups will happen at/near the end. int16_t transIdx; for (transIdx = transCount - 1; transIdx >= 0; transIdx--) { int64_t transition = transitionTimeInSeconds(transIdx); if (local && (sec >= (transition - MAX_OFFSET_SECONDS))) { int32_t offsetBefore = zoneOffsetAt(transIdx - 1); UBool dstBefore = dstOffsetAt(transIdx - 1) != 0; int32_t offsetAfter = zoneOffsetAt(transIdx); UBool dstAfter = dstOffsetAt(transIdx) != 0; UBool dstToStd = dstBefore && !dstAfter; UBool stdToDst = !dstBefore && dstAfter; if (offsetAfter - offsetBefore >= 0) { // Positive transition, which makes a non-existing local time range if (((NonExistingTimeOpt & kStdDstMask) == kStandard && dstToStd) || ((NonExistingTimeOpt & kStdDstMask) == kDaylight && stdToDst)) { transition += offsetBefore; } else if (((NonExistingTimeOpt & kStdDstMask) == kStandard && stdToDst) || ((NonExistingTimeOpt & kStdDstMask) == kDaylight && dstToStd)) { transition += offsetAfter; } else if ((NonExistingTimeOpt & kFormerLatterMask) == kLatter) { transition += offsetBefore; } else { // Interprets the time with rule before the transition, // default for non-existing time range transition += offsetAfter; } } else { // Negative transition, which makes a duplicated local time range if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && dstToStd) || ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && stdToDst)) { transition += offsetAfter; } else if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && stdToDst) || ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && dstToStd)) { transition += offsetBefore; } else if ((DuplicatedTimeOpt & kFormerLatterMask) == kFormer) { transition += offsetBefore; } else { // Interprets the time with rule after the transition, // default for duplicated local time range transition += offsetAfter; } } } if (sec >= transition) { break; } } // transIdx could be -1 when local=true rawoff = rawOffsetAt(transIdx) * U_MILLIS_PER_SECOND; dstoff = dstOffsetAt(transIdx) * U_MILLIS_PER_SECOND; } } else { // No transitions, single pair of offsets only rawoff = initialRawOffset() * U_MILLIS_PER_SECOND; dstoff = initialDstOffset() * U_MILLIS_PER_SECOND; } U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst) - raw=%d, dst=%d\n", date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt, rawoff, dstoff)); } /** * TimeZone API. */ UBool OlsonTimeZone::useDaylightTime() const { // If DST was observed in 1942 (for example) but has never been // observed from 1943 to the present, most clients will expect // this method to return FALSE. This method determines whether // DST is in use in the current year (at any point in the year) // and returns TRUE if so. UDate current = uprv_getUTCtime(); if (finalZone != NULL && current >= finalStartMillis) { return finalZone->useDaylightTime(); } int32_t year, month, dom, dow, doy, mid; Grego::timeToFields(current, year, month, dom, dow, doy, mid); // Find start of this year, and start of next year double start = Grego::fieldsToDay(year, 0, 1) * SECONDS_PER_DAY; double limit = Grego::fieldsToDay(year+1, 0, 1) * SECONDS_PER_DAY; // Return TRUE if DST is observed at any time during the current // year. for (int16_t i = 0; i < transitionCount(); ++i) { double transition = (double)transitionTimeInSeconds(i); if (transition >= limit) { break; } if ((transition >= start && dstOffsetAt(i) != 0) || (transition > start && dstOffsetAt(i - 1) != 0)) { return TRUE; } } return FALSE; } int32_t OlsonTimeZone::getDSTSavings() const{ if (finalZone != NULL){ return finalZone->getDSTSavings(); } return TimeZone::getDSTSavings(); } /** * TimeZone API. */ UBool OlsonTimeZone::inDaylightTime(UDate date, UErrorCode& ec) const { int32_t raw, dst; getOffset(date, FALSE, raw, dst, ec); return dst != 0; } UBool OlsonTimeZone::hasSameRules(const TimeZone &other) const { if (this == &other) { return TRUE; } const OlsonTimeZone* z = dynamic_cast<const OlsonTimeZone*>(&other); if (z == NULL) { return FALSE; } // [sic] pointer comparison: typeMapData points into // memory-mapped or DLL space, so if two zones have the same // pointer, they are equal. if (typeMapData == z->typeMapData) { return TRUE; } // If the pointers are not equal, the zones may still // be equal if their rules and transitions are equal if ((finalZone == NULL && z->finalZone != NULL) || (finalZone != NULL && z->finalZone == NULL) || (finalZone != NULL && z->finalZone != NULL && *finalZone != *z->finalZone)) { return FALSE; } if (finalZone != NULL) { if (finalStartYear != z->finalStartYear || finalStartMillis != z->finalStartMillis) { return FALSE; } } if (typeCount != z->typeCount || transitionCountPre32 != z->transitionCountPre32 || transitionCount32 != z->transitionCount32 || transitionCountPost32 != z->transitionCountPost32) { return FALSE; } return arrayEqual(transitionTimesPre32, z->transitionTimesPre32, sizeof(transitionTimesPre32[0]) * transitionCountPre32 << 1) && arrayEqual(transitionTimes32, z->transitionTimes32, sizeof(transitionTimes32[0]) * transitionCount32) && arrayEqual(transitionTimesPost32, z->transitionTimesPost32, sizeof(transitionTimesPost32[0]) * transitionCountPost32 << 1) && arrayEqual(typeOffsets, z->typeOffsets, sizeof(typeOffsets[0]) * typeCount << 1) && arrayEqual(typeMapData, z->typeMapData, sizeof(typeMapData[0]) * transitionCount()); } void OlsonTimeZone::clearTransitionRules(void) { initialRule = NULL; firstTZTransition = NULL; firstFinalTZTransition = NULL; historicRules = NULL; historicRuleCount = 0; finalZoneWithStartYear = NULL; firstTZTransitionIdx = 0; transitionRulesInitOnce.reset(); } void OlsonTimeZone::deleteTransitionRules(void) { if (initialRule != NULL) { delete initialRule; } if (firstTZTransition != NULL) { delete firstTZTransition; } if (firstFinalTZTransition != NULL) { delete firstFinalTZTransition; } if (finalZoneWithStartYear != NULL) { delete finalZoneWithStartYear; } if (historicRules != NULL) { for (int i = 0; i < historicRuleCount; i++) { if (historicRules[i] != NULL) { delete historicRules[i]; } } uprv_free(historicRules); } clearTransitionRules(); } /* * Lazy transition rules initializer */ static void U_CALLCONV initRules(OlsonTimeZone *This, UErrorCode &status) { This->initTransitionRules(status); } void OlsonTimeZone::checkTransitionRules(UErrorCode& status) const { OlsonTimeZone *ncThis = const_cast<OlsonTimeZone *>(this); umtx_initOnce(ncThis->transitionRulesInitOnce, &initRules, ncThis, status); } void OlsonTimeZone::initTransitionRules(UErrorCode& status) { if(U_FAILURE(status)) { return; } deleteTransitionRules(); UnicodeString tzid; getID(tzid); UnicodeString stdName = tzid + UNICODE_STRING_SIMPLE("(STD)"); UnicodeString dstName = tzid + UNICODE_STRING_SIMPLE("(DST)"); int32_t raw, dst; // Create initial rule raw = initialRawOffset() * U_MILLIS_PER_SECOND; dst = initialDstOffset() * U_MILLIS_PER_SECOND; initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst); // Check to make sure initialRule was created if (initialRule == NULL) { status = U_MEMORY_ALLOCATION_ERROR; deleteTransitionRules(); return; } int32_t transCount = transitionCount(); if (transCount > 0) { int16_t transitionIdx, typeIdx; // We probably no longer need to check the first "real" transition // here, because the new tzcode remove such transitions already. // For now, keeping this code for just in case. Feb 19, 2010 Yoshito firstTZTransitionIdx = 0; for (transitionIdx = 0; transitionIdx < transCount; transitionIdx++) { if (typeMapData[transitionIdx] != 0) { // type 0 is the initial type break; } firstTZTransitionIdx++; } if (transitionIdx == transCount) { // Actually no transitions... } else { // Build historic rule array UDate* times = (UDate*)uprv_malloc(sizeof(UDate)*transCount); /* large enough to store all transition times */ if (times == NULL) { status = U_MEMORY_ALLOCATION_ERROR; deleteTransitionRules(); return; } for (typeIdx = 0; typeIdx < typeCount; typeIdx++) { // Gather all start times for each pair of offsets int32_t nTimes = 0; for (transitionIdx = firstTZTransitionIdx; transitionIdx < transCount; transitionIdx++) { if (typeIdx == (int16_t)typeMapData[transitionIdx]) { UDate tt = (UDate)transitionTime(transitionIdx); if (finalZone == NULL || tt <= finalStartMillis) { // Exclude transitions after finalMillis times[nTimes++] = tt; } } } if (nTimes > 0) { // Create a TimeArrayTimeZoneRule raw = typeOffsets[typeIdx << 1] * U_MILLIS_PER_SECOND; dst = typeOffsets[(typeIdx << 1) + 1] * U_MILLIS_PER_SECOND; if (historicRules == NULL) { historicRuleCount = typeCount; historicRules = (TimeArrayTimeZoneRule**)uprv_malloc(sizeof(TimeArrayTimeZoneRule*)*historicRuleCount); if (historicRules == NULL) { status = U_MEMORY_ALLOCATION_ERROR; deleteTransitionRules(); uprv_free(times); return; } for (int i = 0; i < historicRuleCount; i++) { // Initialize TimeArrayTimeZoneRule pointers as NULL historicRules[i] = NULL; } } historicRules[typeIdx] = new TimeArrayTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst, times, nTimes, DateTimeRule::UTC_TIME); // Check for memory allocation error if (historicRules[typeIdx] == NULL) { status = U_MEMORY_ALLOCATION_ERROR; deleteTransitionRules(); return; } } } uprv_free(times); // Create initial transition typeIdx = (int16_t)typeMapData[firstTZTransitionIdx]; firstTZTransition = new TimeZoneTransition((UDate)transitionTime(firstTZTransitionIdx), *initialRule, *historicRules[typeIdx]); // Check to make sure firstTZTransition was created. if (firstTZTransition == NULL) { status = U_MEMORY_ALLOCATION_ERROR; deleteTransitionRules(); return; } } } if (finalZone != NULL) { // Get the first occurence of final rule starts UDate startTime = (UDate)finalStartMillis; TimeZoneRule *firstFinalRule = NULL; if (finalZone->useDaylightTime()) { /* * Note: When an OlsonTimeZone is constructed, we should set the final year * as the start year of finalZone. However, the bounday condition used for * getting offset from finalZone has some problems. * For now, we do not set the valid start year when the construction time * and create a clone and set the start year when extracting rules. */ finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone(); // Check to make sure finalZone was actually cloned. if (finalZoneWithStartYear == NULL) { status = U_MEMORY_ALLOCATION_ERROR; deleteTransitionRules(); return; } finalZoneWithStartYear->setStartYear(finalStartYear); TimeZoneTransition tzt; finalZoneWithStartYear->getNextTransition(startTime, false, tzt); firstFinalRule = tzt.getTo()->clone(); // Check to make sure firstFinalRule received proper clone. if (firstFinalRule == NULL) { status = U_MEMORY_ALLOCATION_ERROR; deleteTransitionRules(); return; } startTime = tzt.getTime(); } else { // final rule with no transitions finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone(); // Check to make sure finalZone was actually cloned. if (finalZoneWithStartYear == NULL) { status = U_MEMORY_ALLOCATION_ERROR; deleteTransitionRules(); return; } finalZone->getID(tzid); firstFinalRule = new TimeArrayTimeZoneRule(tzid, finalZone->getRawOffset(), 0, &startTime, 1, DateTimeRule::UTC_TIME); // Check firstFinalRule was properly created. if (firstFinalRule == NULL) { status = U_MEMORY_ALLOCATION_ERROR; deleteTransitionRules(); return; } } TimeZoneRule *prevRule = NULL; if (transCount > 0) { prevRule = historicRules[typeMapData[transCount - 1]]; } if (prevRule == NULL) { // No historic transitions, but only finalZone available prevRule = initialRule; } firstFinalTZTransition = new TimeZoneTransition(); // Check to make sure firstFinalTZTransition was created before dereferencing if (firstFinalTZTransition == NULL) { status = U_MEMORY_ALLOCATION_ERROR; deleteTransitionRules(); return; } firstFinalTZTransition->setTime(startTime); firstFinalTZTransition->adoptFrom(prevRule->clone()); firstFinalTZTransition->adoptTo(firstFinalRule); } } UBool OlsonTimeZone::getNextTransition(UDate base, UBool inclusive, TimeZoneTransition& result) const { UErrorCode status = U_ZERO_ERROR; checkTransitionRules(status); if (U_FAILURE(status)) { return FALSE; } if (finalZone != NULL) { if (inclusive && base == firstFinalTZTransition->getTime()) { result = *firstFinalTZTransition; return TRUE; } else if (base >= firstFinalTZTransition->getTime()) { if (finalZone->useDaylightTime()) { //return finalZone->getNextTransition(base, inclusive, result); return finalZoneWithStartYear->getNextTransition(base, inclusive, result); } else { // No more transitions return FALSE; } } } if (historicRules != NULL) { // Find a historical transition int16_t transCount = transitionCount(); int16_t ttidx = transCount - 1; for (; ttidx >= firstTZTransitionIdx; ttidx--) { UDate t = (UDate)transitionTime(ttidx); if (base > t || (!inclusive && base == t)) { break; } } if (ttidx == transCount - 1) { if (firstFinalTZTransition != NULL) { result = *firstFinalTZTransition; return TRUE; } else { return FALSE; } } else if (ttidx < firstTZTransitionIdx) { result = *firstTZTransition; return TRUE; } else { // Create a TimeZoneTransition TimeZoneRule *to = historicRules[typeMapData[ttidx + 1]]; TimeZoneRule *from = historicRules[typeMapData[ttidx]]; UDate startTime = (UDate)transitionTime(ttidx+1); // The transitions loaded from zoneinfo.res may contain non-transition data UnicodeString fromName, toName; from->getName(fromName); to->getName(toName); if (fromName == toName && from->getRawOffset() == to->getRawOffset() && from->getDSTSavings() == to->getDSTSavings()) { return getNextTransition(startTime, false, result); } result.setTime(startTime); result.adoptFrom(from->clone()); result.adoptTo(to->clone()); return TRUE; } } return FALSE; } UBool OlsonTimeZone::getPreviousTransition(UDate base, UBool inclusive, TimeZoneTransition& result) const { UErrorCode status = U_ZERO_ERROR; checkTransitionRules(status); if (U_FAILURE(status)) { return FALSE; } if (finalZone != NULL) { if (inclusive && base == firstFinalTZTransition->getTime()) { result = *firstFinalTZTransition; return TRUE; } else if (base > firstFinalTZTransition->getTime()) { if (finalZone->useDaylightTime()) { //return finalZone->getPreviousTransition(base, inclusive, result); return finalZoneWithStartYear->getPreviousTransition(base, inclusive, result); } else { result = *firstFinalTZTransition; return TRUE; } } } if (historicRules != NULL) { // Find a historical transition int16_t ttidx = transitionCount() - 1; for (; ttidx >= firstTZTransitionIdx; ttidx--) { UDate t = (UDate)transitionTime(ttidx); if (base > t || (inclusive && base == t)) { break; } } if (ttidx < firstTZTransitionIdx) { // No more transitions return FALSE; } else if (ttidx == firstTZTransitionIdx) { result = *firstTZTransition; return TRUE; } else { // Create a TimeZoneTransition TimeZoneRule *to = historicRules[typeMapData[ttidx]]; TimeZoneRule *from = historicRules[typeMapData[ttidx-1]]; UDate startTime = (UDate)transitionTime(ttidx); // The transitions loaded from zoneinfo.res may contain non-transition data UnicodeString fromName, toName; from->getName(fromName); to->getName(toName); if (fromName == toName && from->getRawOffset() == to->getRawOffset() && from->getDSTSavings() == to->getDSTSavings()) { return getPreviousTransition(startTime, false, result); } result.setTime(startTime); result.adoptFrom(from->clone()); result.adoptTo(to->clone()); return TRUE; } } return FALSE; } int32_t OlsonTimeZone::countTransitionRules(UErrorCode& status) const { if (U_FAILURE(status)) { return 0; } checkTransitionRules(status); if (U_FAILURE(status)) { return 0; } int32_t count = 0; if (historicRules != NULL) { // historicRules may contain null entries when original zoneinfo data // includes non transition data. for (int32_t i = 0; i < historicRuleCount; i++) { if (historicRules[i] != NULL) { count++; } } } if (finalZone != NULL) { if (finalZone->useDaylightTime()) { count += 2; } else { count++; } } return count; } void OlsonTimeZone::getTimeZoneRules(const InitialTimeZoneRule*& initial, const TimeZoneRule* trsrules[], int32_t& trscount, UErrorCode& status) const { if (U_FAILURE(status)) { return; } checkTransitionRules(status); if (U_FAILURE(status)) { return; } // Initial rule initial = initialRule; // Transition rules int32_t cnt = 0; if (historicRules != NULL && trscount > cnt) { // historicRules may contain null entries when original zoneinfo data // includes non transition data. for (int32_t i = 0; i < historicRuleCount; i++) { if (historicRules[i] != NULL) { trsrules[cnt++] = historicRules[i]; if (cnt >= trscount) { break; } } } } if (finalZoneWithStartYear != NULL && trscount > cnt) { const InitialTimeZoneRule *tmpini; int32_t tmpcnt = trscount - cnt; finalZoneWithStartYear->getTimeZoneRules(tmpini, &trsrules[cnt], tmpcnt, status); if (U_FAILURE(status)) { return; } cnt += tmpcnt; } // Set the result length trscount = cnt; } U_NAMESPACE_END #endif // !UCONFIG_NO_FORMATTING //eof