// Copyright (C) 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html // file: rbbi_cache.cpp #include "unicode/utypes.h" #if !UCONFIG_NO_BREAK_ITERATION #include "unicode/ubrk.h" #include "unicode/rbbi.h" #include "rbbi_cache.h" #include "brkeng.h" #include "cmemory.h" #include "rbbidata.h" #include "rbbirb.h" #include "uassert.h" #include "uvectr32.h" U_NAMESPACE_BEGIN /* * DictionaryCache implementation */ RuleBasedBreakIterator::DictionaryCache::DictionaryCache(RuleBasedBreakIterator *bi, UErrorCode &status) : fBI(bi), fBreaks(status), fPositionInCache(-1), fStart(0), fLimit(0), fFirstRuleStatusIndex(0), fOtherRuleStatusIndex(0) { } RuleBasedBreakIterator::DictionaryCache::~DictionaryCache() { } void RuleBasedBreakIterator::DictionaryCache::reset() { fPositionInCache = -1; fStart = 0; fLimit = 0; fFirstRuleStatusIndex = 0; fOtherRuleStatusIndex = 0; fBreaks.removeAllElements(); } UBool RuleBasedBreakIterator::DictionaryCache::following(int32_t fromPos, int32_t *result, int32_t *statusIndex) { if (fromPos >= fLimit || fromPos < fStart) { fPositionInCache = -1; return FALSE; } // Sequential iteration, move from previous boundary to the following int32_t r = 0; if (fPositionInCache >= 0 && fPositionInCache < fBreaks.size() && fBreaks.elementAti(fPositionInCache) == fromPos) { ++fPositionInCache; if (fPositionInCache >= fBreaks.size()) { fPositionInCache = -1; return FALSE; } r = fBreaks.elementAti(fPositionInCache); U_ASSERT(r > fromPos); *result = r; *statusIndex = fOtherRuleStatusIndex; return TRUE; } // Random indexing. Linear search for the boundary following the given position. for (fPositionInCache = 0; fPositionInCache < fBreaks.size(); ++fPositionInCache) { r= fBreaks.elementAti(fPositionInCache); if (r > fromPos) { *result = r; *statusIndex = fOtherRuleStatusIndex; return TRUE; } } U_ASSERT(FALSE); fPositionInCache = -1; return FALSE; } UBool RuleBasedBreakIterator::DictionaryCache::preceding(int32_t fromPos, int32_t *result, int32_t *statusIndex) { if (fromPos <= fStart || fromPos > fLimit) { fPositionInCache = -1; return FALSE; } if (fromPos == fLimit) { fPositionInCache = fBreaks.size() - 1; if (fPositionInCache >= 0) { U_ASSERT(fBreaks.elementAti(fPositionInCache) == fromPos); } } int32_t r; if (fPositionInCache > 0 && fPositionInCache < fBreaks.size() && fBreaks.elementAti(fPositionInCache) == fromPos) { --fPositionInCache; r = fBreaks.elementAti(fPositionInCache); U_ASSERT(r < fromPos); *result = r; *statusIndex = ( r== fStart) ? fFirstRuleStatusIndex : fOtherRuleStatusIndex; return TRUE; } if (fPositionInCache == 0) { fPositionInCache = -1; return FALSE; } for (fPositionInCache = fBreaks.size()-1; fPositionInCache >= 0; --fPositionInCache) { r = fBreaks.elementAti(fPositionInCache); if (r < fromPos) { *result = r; *statusIndex = ( r == fStart) ? fFirstRuleStatusIndex : fOtherRuleStatusIndex; return TRUE; } } U_ASSERT(FALSE); fPositionInCache = -1; return FALSE; } void RuleBasedBreakIterator::DictionaryCache::populateDictionary(int32_t startPos, int32_t endPos, int32_t firstRuleStatus, int32_t otherRuleStatus) { if ((endPos - startPos) <= 1) { return; } reset(); fFirstRuleStatusIndex = firstRuleStatus; fOtherRuleStatusIndex = otherRuleStatus; int32_t rangeStart = startPos; int32_t rangeEnd = endPos; uint16_t category; int32_t current; UErrorCode status = U_ZERO_ERROR; int32_t foundBreakCount = 0; UText *text = &fBI->fText; // Loop through the text, looking for ranges of dictionary characters. // For each span, find the appropriate break engine, and ask it to find // any breaks within the span. utext_setNativeIndex(text, rangeStart); UChar32 c = utext_current32(text); category = UTRIE2_GET16(fBI->fData->fTrie, c); while(U_SUCCESS(status)) { while((current = (int32_t)UTEXT_GETNATIVEINDEX(text)) < rangeEnd && (category & 0x4000) == 0) { utext_next32(text); // TODO: cleaner loop structure. c = utext_current32(text); category = UTRIE2_GET16(fBI->fData->fTrie, c); } if (current >= rangeEnd) { break; } // We now have a dictionary character. Get the appropriate language object // to deal with it. const LanguageBreakEngine *lbe = fBI->getLanguageBreakEngine(c); // Ask the language object if there are any breaks. It will add them to the cache and // leave the text pointer on the other side of its range, ready to search for the next one. if (lbe != NULL) { foundBreakCount += lbe->findBreaks(text, rangeStart, rangeEnd, fBreaks); } // Reload the loop variables for the next go-round c = utext_current32(text); category = UTRIE2_GET16(fBI->fData->fTrie, c); } // If we found breaks, ensure that the first and last entries are // the original starting and ending position. And initialize the // cache iteration position to the first entry. // printf("foundBreakCount = %d\n", foundBreakCount); if (foundBreakCount > 0) { U_ASSERT(foundBreakCount == fBreaks.size()); if (startPos < fBreaks.elementAti(0)) { // The dictionary did not place a boundary at the start of the segment of text. // Add one now. This should not commonly happen, but it would be easy for interactions // of the rules for dictionary segments and the break engine implementations to // inadvertently cause it. Cover it here, just in case. fBreaks.insertElementAt(startPos, 0, status); } if (endPos > fBreaks.peeki()) { fBreaks.push(endPos, status); } fPositionInCache = 0; // Note: Dictionary matching may extend beyond the original limit. fStart = fBreaks.elementAti(0); fLimit = fBreaks.peeki(); } else { // there were no language-based breaks, even though the segment contained // dictionary characters. Subsequent attempts to fetch boundaries from the dictionary cache // for this range will fail, and the calling code will fall back to the rule based boundaries. } } /* * BreakCache implemetation */ RuleBasedBreakIterator::BreakCache::BreakCache(RuleBasedBreakIterator *bi, UErrorCode &status) : fBI(bi), fSideBuffer(status) { reset(); } RuleBasedBreakIterator::BreakCache::~BreakCache() { } void RuleBasedBreakIterator::BreakCache::reset(int32_t pos, int32_t ruleStatus) { fStartBufIdx = 0; fEndBufIdx = 0; fTextIdx = pos; fBufIdx = 0; fBoundaries[0] = pos; fStatuses[0] = (uint16_t)ruleStatus; } int32_t RuleBasedBreakIterator::BreakCache::current() { fBI->fPosition = fTextIdx; fBI->fRuleStatusIndex = fStatuses[fBufIdx]; fBI->fDone = FALSE; return fTextIdx; } void RuleBasedBreakIterator::BreakCache::following(int32_t startPos, UErrorCode &status) { if (U_FAILURE(status)) { return; } if (startPos == fTextIdx || seek(startPos) || populateNear(startPos, status)) { // startPos is in the cache. Do a next() from that position. // TODO: an awkward set of interactions with bi->fDone // seek() does not clear it; it can't because of interactions with populateNear(). // next() does not clear it in the fast-path case, where everything matters. Maybe it should. // So clear it here, for the case where seek() succeeded on an iterator that had previously run off the end. fBI->fDone = false; next(); } return; } void RuleBasedBreakIterator::BreakCache::preceding(int32_t startPos, UErrorCode &status) { if (U_FAILURE(status)) { return; } if (startPos == fTextIdx || seek(startPos) || populateNear(startPos, status)) { if (startPos == fTextIdx) { previous(status); } else { // seek() leaves the BreakCache positioned at the preceding boundary // if the requested position is between two bounaries. // current() pushes the BreakCache position out to the BreakIterator itself. U_ASSERT(startPos > fTextIdx); current(); } } return; } /* * Out-of-line code for BreakCache::next(). * Cache does not already contain the boundary */ void RuleBasedBreakIterator::BreakCache::nextOL() { fBI->fDone = !populateFollowing(); fBI->fPosition = fTextIdx; fBI->fRuleStatusIndex = fStatuses[fBufIdx]; return; } void RuleBasedBreakIterator::BreakCache::previous(UErrorCode &status) { if (U_FAILURE(status)) { return; } int32_t initialBufIdx = fBufIdx; if (fBufIdx == fStartBufIdx) { // At start of cache. Prepend to it. populatePreceding(status); } else { // Cache already holds the next boundary fBufIdx = modChunkSize(fBufIdx - 1); fTextIdx = fBoundaries[fBufIdx]; } fBI->fDone = (fBufIdx == initialBufIdx); fBI->fPosition = fTextIdx; fBI->fRuleStatusIndex = fStatuses[fBufIdx]; return; } UBool RuleBasedBreakIterator::BreakCache::seek(int32_t pos) { if (pos < fBoundaries[fStartBufIdx] || pos > fBoundaries[fEndBufIdx]) { return FALSE; } if (pos == fBoundaries[fStartBufIdx]) { // Common case: seek(0), from BreakIterator::first() fBufIdx = fStartBufIdx; fTextIdx = fBoundaries[fBufIdx]; return TRUE; } if (pos == fBoundaries[fEndBufIdx]) { fBufIdx = fEndBufIdx; fTextIdx = fBoundaries[fBufIdx]; return TRUE; } int32_t min = fStartBufIdx; int32_t max = fEndBufIdx; while (min != max) { int32_t probe = (min + max + (min>max ? CACHE_SIZE : 0)) / 2; probe = modChunkSize(probe); if (fBoundaries[probe] > pos) { max = probe; } else { min = modChunkSize(probe + 1); } } U_ASSERT(fBoundaries[max] > pos); fBufIdx = modChunkSize(max - 1); fTextIdx = fBoundaries[fBufIdx]; U_ASSERT(fTextIdx <= pos); return TRUE; } UBool RuleBasedBreakIterator::BreakCache::populateNear(int32_t position, UErrorCode &status) { if (U_FAILURE(status)) { return FALSE; } U_ASSERT(position < fBoundaries[fStartBufIdx] || position > fBoundaries[fEndBufIdx]); // Find a boundary somewhere in the vicinity of the requested position. // Depending on the safe rules and the text data, it could be either before, at, or after // the requested position. // If the requested position is not near already cached positions, clear the existing cache, // find a near-by boundary and begin new cache contents there. if ((position < fBoundaries[fStartBufIdx] - 15) || position > (fBoundaries[fEndBufIdx] + 15)) { int32_t aBoundary = 0; int32_t ruleStatusIndex = 0; if (position > 20) { int32_t backupPos = fBI->handleSafePrevious(position); if (backupPos > 0) { // Advance to the boundary following the backup position. // There is a complication: the safe reverse rules identify pairs of code points // that are safe. If advancing from the safe point moves forwards by less than // two code points, we need to advance one more time to ensure that the boundary // is good, including a correct rules status value. // fBI->fPosition = backupPos; aBoundary = fBI->handleNext(); if (aBoundary <= backupPos + 4) { // +4 is a quick test for possibly having advanced only one codepoint. // Four being the length of the longest potential code point, a supplementary in UTF-8 utext_setNativeIndex(&fBI->fText, aBoundary); if (backupPos == utext_getPreviousNativeIndex(&fBI->fText)) { // The initial handleNext() only advanced by a single code point. Go again. aBoundary = fBI->handleNext(); // Safe rules identify safe pairs. } } ruleStatusIndex = fBI->fRuleStatusIndex; } } reset(aBoundary, ruleStatusIndex); // Reset cache to hold aBoundary as a single starting point. } // Fill in boundaries between existing cache content and the new requested position. if (fBoundaries[fEndBufIdx] < position) { // The last position in the cache precedes the requested position. // Add following position(s) to the cache. while (fBoundaries[fEndBufIdx] < position) { if (!populateFollowing()) { U_ASSERT(false); return false; } } fBufIdx = fEndBufIdx; // Set iterator position to the end of the buffer. fTextIdx = fBoundaries[fBufIdx]; // Required because populateFollowing may add extra boundaries. while (fTextIdx > position) { // Move backwards to a position at or preceding the requested pos. previous(status); } return true; } if (fBoundaries[fStartBufIdx] > position) { // The first position in the cache is beyond the requested position. // back up more until we get a boundary <= the requested position. while (fBoundaries[fStartBufIdx] > position) { populatePreceding(status); } fBufIdx = fStartBufIdx; // Set iterator position to the start of the buffer. fTextIdx = fBoundaries[fBufIdx]; // Required because populatePreceding may add extra boundaries. while (fTextIdx < position) { // Move forwards to a position at or following the requested pos. next(); } if (fTextIdx > position) { // If position is not itself a boundary, the next() loop above will overshoot. // Back up one, leaving cache position at the boundary preceding the requested position. previous(status); } return true; } U_ASSERT(fTextIdx == position); return true; } UBool RuleBasedBreakIterator::BreakCache::populateFollowing() { int32_t fromPosition = fBoundaries[fEndBufIdx]; int32_t fromRuleStatusIdx = fStatuses[fEndBufIdx]; int32_t pos = 0; int32_t ruleStatusIdx = 0; if (fBI->fDictionaryCache->following(fromPosition, &pos, &ruleStatusIdx)) { addFollowing(pos, ruleStatusIdx, UpdateCachePosition); return TRUE; } fBI->fPosition = fromPosition; pos = fBI->handleNext(); if (pos == UBRK_DONE) { return FALSE; } ruleStatusIdx = fBI->fRuleStatusIndex; if (fBI->fDictionaryCharCount > 0) { // The text segment obtained from the rules includes dictionary characters. // Subdivide it, with subdivided results going into the dictionary cache. fBI->fDictionaryCache->populateDictionary(fromPosition, pos, fromRuleStatusIdx, ruleStatusIdx); if (fBI->fDictionaryCache->following(fromPosition, &pos, &ruleStatusIdx)) { addFollowing(pos, ruleStatusIdx, UpdateCachePosition); return TRUE; // TODO: may want to move a sizable chunk of dictionary cache to break cache at this point. // But be careful with interactions with populateNear(). } } // Rule based segment did not include dictionary characters. // Or, it did contain dictionary chars, but the dictionary segmenter didn't handle them, // meaning that we didn't take the return, above. // Add its end point to the cache. addFollowing(pos, ruleStatusIdx, UpdateCachePosition); // Add several non-dictionary boundaries at this point, to optimize straight forward iteration. // (subsequent calls to BreakIterator::next() will take the fast path, getting cached results. // for (int count=0; count<6; ++count) { pos = fBI->handleNext(); if (pos == UBRK_DONE || fBI->fDictionaryCharCount > 0) { break; } addFollowing(pos, fBI->fRuleStatusIndex, RetainCachePosition); } return TRUE; } UBool RuleBasedBreakIterator::BreakCache::populatePreceding(UErrorCode &status) { if (U_FAILURE(status)) { return FALSE; } int32_t fromPosition = fBoundaries[fStartBufIdx]; if (fromPosition == 0) { return FALSE; } int32_t position = 0; int32_t positionStatusIdx = 0; if (fBI->fDictionaryCache->preceding(fromPosition, &position, &positionStatusIdx)) { addPreceding(position, positionStatusIdx, UpdateCachePosition); return TRUE; } int32_t backupPosition = fromPosition; // Find a boundary somewhere preceding the first already-cached boundary do { backupPosition = backupPosition - 30; if (backupPosition <= 0) { backupPosition = 0; } else { backupPosition = fBI->handleSafePrevious(backupPosition); } if (backupPosition == UBRK_DONE || backupPosition == 0) { position = 0; positionStatusIdx = 0; } else { // Advance to the boundary following the backup position. // There is a complication: the safe reverse rules identify pairs of code points // that are safe. If advancing from the safe point moves forwards by less than // two code points, we need to advance one more time to ensure that the boundary // is good, including a correct rules status value. // fBI->fPosition = backupPosition; position = fBI->handleNext(); if (position <= backupPosition + 4) { // +4 is a quick test for possibly having advanced only one codepoint. // Four being the length of the longest potential code point, a supplementary in UTF-8 utext_setNativeIndex(&fBI->fText, position); if (backupPosition == utext_getPreviousNativeIndex(&fBI->fText)) { // The initial handleNext() only advanced by a single code point. Go again. position = fBI->handleNext(); // Safe rules identify safe pairs. } }; positionStatusIdx = fBI->fRuleStatusIndex; } } while (position >= fromPosition); // Find boundaries between the one we just located and the first already-cached boundary // Put them in a side buffer, because we don't yet know where they will fall in the circular cache buffer.. fSideBuffer.removeAllElements(); fSideBuffer.addElement(position, status); fSideBuffer.addElement(positionStatusIdx, status); do { int32_t prevPosition = fBI->fPosition = position; int32_t prevStatusIdx = positionStatusIdx; position = fBI->handleNext(); positionStatusIdx = fBI->fRuleStatusIndex; if (position == UBRK_DONE) { break; } UBool segmentHandledByDictionary = FALSE; if (fBI->fDictionaryCharCount != 0) { // Segment from the rules includes dictionary characters. // Subdivide it, with subdivided results going into the dictionary cache. int32_t dictSegEndPosition = position; fBI->fDictionaryCache->populateDictionary(prevPosition, dictSegEndPosition, prevStatusIdx, positionStatusIdx); while (fBI->fDictionaryCache->following(prevPosition, &position, &positionStatusIdx)) { segmentHandledByDictionary = true; U_ASSERT(position > prevPosition); if (position >= fromPosition) { break; } U_ASSERT(position <= dictSegEndPosition); fSideBuffer.addElement(position, status); fSideBuffer.addElement(positionStatusIdx, status); prevPosition = position; } U_ASSERT(position==dictSegEndPosition || position>=fromPosition); } if (!segmentHandledByDictionary && position < fromPosition) { fSideBuffer.addElement(position, status); fSideBuffer.addElement(positionStatusIdx, status); } } while (position < fromPosition); // Move boundaries from the side buffer to the main circular buffer. UBool success = FALSE; if (!fSideBuffer.isEmpty()) { positionStatusIdx = fSideBuffer.popi(); position = fSideBuffer.popi(); addPreceding(position, positionStatusIdx, UpdateCachePosition); success = TRUE; } while (!fSideBuffer.isEmpty()) { positionStatusIdx = fSideBuffer.popi(); position = fSideBuffer.popi(); if (!addPreceding(position, positionStatusIdx, RetainCachePosition)) { // No space in circular buffer to hold a new preceding result while // also retaining the current cache (iteration) position. // Bailing out is safe; the cache will refill again if needed. break; } } return success; } void RuleBasedBreakIterator::BreakCache::addFollowing(int32_t position, int32_t ruleStatusIdx, UpdatePositionValues update) { U_ASSERT(position > fBoundaries[fEndBufIdx]); U_ASSERT(ruleStatusIdx <= UINT16_MAX); int32_t nextIdx = modChunkSize(fEndBufIdx + 1); if (nextIdx == fStartBufIdx) { fStartBufIdx = modChunkSize(fStartBufIdx + 6); // TODO: experiment. Probably revert to 1. } fBoundaries[nextIdx] = position; fStatuses[nextIdx] = static_cast<uint16_t>(ruleStatusIdx); fEndBufIdx = nextIdx; if (update == UpdateCachePosition) { // Set current position to the newly added boundary. fBufIdx = nextIdx; fTextIdx = position; } else { // Retaining the original cache position. // Check if the added boundary wraps around the buffer, and would over-write the original position. // It's the responsibility of callers of this function to not add too many. U_ASSERT(nextIdx != fBufIdx); } } bool RuleBasedBreakIterator::BreakCache::addPreceding(int32_t position, int32_t ruleStatusIdx, UpdatePositionValues update) { U_ASSERT(position < fBoundaries[fStartBufIdx]); U_ASSERT(ruleStatusIdx <= UINT16_MAX); int32_t nextIdx = modChunkSize(fStartBufIdx - 1); if (nextIdx == fEndBufIdx) { if (fBufIdx == fEndBufIdx && update == RetainCachePosition) { // Failure. The insertion of the new boundary would claim the buffer position that is the // current iteration position. And we also want to retain the current iteration position. // (The buffer is already completely full of entries that precede the iteration position.) return false; } fEndBufIdx = modChunkSize(fEndBufIdx - 1); } fBoundaries[nextIdx] = position; fStatuses[nextIdx] = static_cast<uint16_t>(ruleStatusIdx); fStartBufIdx = nextIdx; if (update == UpdateCachePosition) { fBufIdx = nextIdx; fTextIdx = position; } return true; } void RuleBasedBreakIterator::BreakCache::dumpCache() { #ifdef RBBI_DEBUG RBBIDebugPrintf("fTextIdx:%d fBufIdx:%d\n", fTextIdx, fBufIdx); for (int32_t i=fStartBufIdx; ; i=modChunkSize(i+1)) { RBBIDebugPrintf("%d %d\n", i, fBoundaries[i]); if (i == fEndBufIdx) { break; } } #endif } U_NAMESPACE_END #endif // #if !UCONFIG_NO_BREAK_ITERATION