// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ******************************************************************************* * * Copyright (C) 2009-2014, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: normalizer2impl.h * encoding: UTF-8 * tab size: 8 (not used) * indentation:4 * * created on: 2009nov22 * created by: Markus W. Scherer */ #ifndef __NORMALIZER2IMPL_H__ #define __NORMALIZER2IMPL_H__ #include "unicode/utypes.h" #if !UCONFIG_NO_NORMALIZATION #include "unicode/normalizer2.h" #include "unicode/ucptrie.h" #include "unicode/unistr.h" #include "unicode/unorm.h" #include "unicode/utf.h" #include "unicode/utf16.h" #include "mutex.h" #include "udataswp.h" #include "uset_imp.h" // When the nfc.nrm data is *not* hardcoded into the common library // (with this constant set to 0), // then it needs to be built into the data package: // Add nfc.nrm to icu4c/source/data/Makefile.in DAT_FILES_SHORT #define NORM2_HARDCODE_NFC_DATA 1 U_NAMESPACE_BEGIN struct CanonIterData; class ByteSink; class Edits; class InitCanonIterData; class LcccContext; class U_COMMON_API Hangul { public: /* Korean Hangul and Jamo constants */ enum { JAMO_L_BASE=0x1100, /* "lead" jamo */ JAMO_L_END=0x1112, JAMO_V_BASE=0x1161, /* "vowel" jamo */ JAMO_V_END=0x1175, JAMO_T_BASE=0x11a7, /* "trail" jamo */ JAMO_T_END=0x11c2, HANGUL_BASE=0xac00, HANGUL_END=0xd7a3, JAMO_L_COUNT=19, JAMO_V_COUNT=21, JAMO_T_COUNT=28, JAMO_VT_COUNT=JAMO_V_COUNT*JAMO_T_COUNT, HANGUL_COUNT=JAMO_L_COUNT*JAMO_V_COUNT*JAMO_T_COUNT, HANGUL_LIMIT=HANGUL_BASE+HANGUL_COUNT }; static inline UBool isHangul(UChar32 c) { return HANGUL_BASE<=c && c<HANGUL_LIMIT; } static inline UBool isHangulLV(UChar32 c) { c-=HANGUL_BASE; return 0<=c && c<HANGUL_COUNT && c%JAMO_T_COUNT==0; } static inline UBool isJamoL(UChar32 c) { return (uint32_t)(c-JAMO_L_BASE)<JAMO_L_COUNT; } static inline UBool isJamoV(UChar32 c) { return (uint32_t)(c-JAMO_V_BASE)<JAMO_V_COUNT; } static inline UBool isJamoT(UChar32 c) { int32_t t=c-JAMO_T_BASE; return 0<t && t<JAMO_T_COUNT; // not JAMO_T_BASE itself } static UBool isJamo(UChar32 c) { return JAMO_L_BASE<=c && c<=JAMO_T_END && (c<=JAMO_L_END || (JAMO_V_BASE<=c && c<=JAMO_V_END) || JAMO_T_BASE<c); } /** * Decomposes c, which must be a Hangul syllable, into buffer * and returns the length of the decomposition (2 or 3). */ static inline int32_t decompose(UChar32 c, UChar buffer[3]) { c-=HANGUL_BASE; UChar32 c2=c%JAMO_T_COUNT; c/=JAMO_T_COUNT; buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT); buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT); if(c2==0) { return 2; } else { buffer[2]=(UChar)(JAMO_T_BASE+c2); return 3; } } /** * Decomposes c, which must be a Hangul syllable, into buffer. * This is the raw, not recursive, decomposition. Its length is always 2. */ static inline void getRawDecomposition(UChar32 c, UChar buffer[2]) { UChar32 orig=c; c-=HANGUL_BASE; UChar32 c2=c%JAMO_T_COUNT; if(c2==0) { c/=JAMO_T_COUNT; buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT); buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT); } else { buffer[0]=(UChar)(orig-c2); // LV syllable buffer[1]=(UChar)(JAMO_T_BASE+c2); } } private: Hangul(); // no instantiation }; class Normalizer2Impl; class U_COMMON_API ReorderingBuffer : public UMemory { public: /** Constructs only; init() should be called. */ ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest) : impl(ni), str(dest), start(NULL), reorderStart(NULL), limit(NULL), remainingCapacity(0), lastCC(0) {} /** Constructs, removes the string contents, and initializes for a small initial capacity. */ ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest, UErrorCode &errorCode); ~ReorderingBuffer() { if(start!=NULL) { str.releaseBuffer((int32_t)(limit-start)); } } UBool init(int32_t destCapacity, UErrorCode &errorCode); UBool isEmpty() const { return start==limit; } int32_t length() const { return (int32_t)(limit-start); } UChar *getStart() { return start; } UChar *getLimit() { return limit; } uint8_t getLastCC() const { return lastCC; } UBool equals(const UChar *start, const UChar *limit) const; UBool equals(const uint8_t *otherStart, const uint8_t *otherLimit) const; UBool append(UChar32 c, uint8_t cc, UErrorCode &errorCode) { return (c<=0xffff) ? appendBMP((UChar)c, cc, errorCode) : appendSupplementary(c, cc, errorCode); } UBool append(const UChar *s, int32_t length, UBool isNFD, uint8_t leadCC, uint8_t trailCC, UErrorCode &errorCode); UBool appendBMP(UChar c, uint8_t cc, UErrorCode &errorCode) { if(remainingCapacity==0 && !resize(1, errorCode)) { return FALSE; } if(lastCC<=cc || cc==0) { *limit++=c; lastCC=cc; if(cc<=1) { reorderStart=limit; } } else { insert(c, cc); } --remainingCapacity; return TRUE; } UBool appendZeroCC(UChar32 c, UErrorCode &errorCode); UBool appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode); void remove(); void removeSuffix(int32_t suffixLength); void setReorderingLimit(UChar *newLimit) { remainingCapacity+=(int32_t)(limit-newLimit); reorderStart=limit=newLimit; lastCC=0; } void copyReorderableSuffixTo(UnicodeString &s) const { s.setTo(ConstChar16Ptr(reorderStart), (int32_t)(limit-reorderStart)); } private: /* * TODO: Revisit whether it makes sense to track reorderStart. * It is set to after the last known character with cc<=1, * which stops previousCC() before it reads that character and looks up its cc. * previousCC() is normally only called from insert(). * In other words, reorderStart speeds up the insertion of a combining mark * into a multi-combining mark sequence where it does not belong at the end. * This might not be worth the trouble. * On the other hand, it's not a huge amount of trouble. * * We probably need it for UNORM_SIMPLE_APPEND. */ UBool appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode); void insert(UChar32 c, uint8_t cc); static void writeCodePoint(UChar *p, UChar32 c) { if(c<=0xffff) { *p=(UChar)c; } else { p[0]=U16_LEAD(c); p[1]=U16_TRAIL(c); } } UBool resize(int32_t appendLength, UErrorCode &errorCode); const Normalizer2Impl &impl; UnicodeString &str; UChar *start, *reorderStart, *limit; int32_t remainingCapacity; uint8_t lastCC; // private backward iterator void setIterator() { codePointStart=limit; } void skipPrevious(); // Requires start<codePointStart. uint8_t previousCC(); // Returns 0 if there is no previous character. UChar *codePointStart, *codePointLimit; }; /** * Low-level implementation of the Unicode Normalization Algorithm. * For the data structure and details see the documentation at the end of * this normalizer2impl.h and in the design doc at * http://site.icu-project.org/design/normalization/custom */ class U_COMMON_API Normalizer2Impl : public UObject { public: Normalizer2Impl() : normTrie(NULL), fCanonIterData(NULL) { fCanonIterDataInitOnce.reset(); } virtual ~Normalizer2Impl(); void init(const int32_t *inIndexes, const UCPTrie *inTrie, const uint16_t *inExtraData, const uint8_t *inSmallFCD); void addLcccChars(UnicodeSet &set) const; void addPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const; void addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const; // low-level properties ------------------------------------------------ *** UBool ensureCanonIterData(UErrorCode &errorCode) const; // The trie stores values for lead surrogate code *units*. // Surrogate code *points* are inert. uint16_t getNorm16(UChar32 c) const { return U_IS_LEAD(c) ? INERT : UCPTRIE_FAST_GET(normTrie, UCPTRIE_16, c); } uint16_t getRawNorm16(UChar32 c) const { return UCPTRIE_FAST_GET(normTrie, UCPTRIE_16, c); } UNormalizationCheckResult getCompQuickCheck(uint16_t norm16) const { if(norm16<minNoNo || MIN_YES_YES_WITH_CC<=norm16) { return UNORM_YES; } else if(minMaybeYes<=norm16) { return UNORM_MAYBE; } else { return UNORM_NO; } } UBool isAlgorithmicNoNo(uint16_t norm16) const { return limitNoNo<=norm16 && norm16<minMaybeYes; } UBool isCompNo(uint16_t norm16) const { return minNoNo<=norm16 && norm16<minMaybeYes; } UBool isDecompYes(uint16_t norm16) const { return norm16<minYesNo || minMaybeYes<=norm16; } uint8_t getCC(uint16_t norm16) const { if(norm16>=MIN_NORMAL_MAYBE_YES) { return getCCFromNormalYesOrMaybe(norm16); } if(norm16<minNoNo || limitNoNo<=norm16) { return 0; } return getCCFromNoNo(norm16); } static uint8_t getCCFromNormalYesOrMaybe(uint16_t norm16) { return (uint8_t)(norm16 >> OFFSET_SHIFT); } static uint8_t getCCFromYesOrMaybe(uint16_t norm16) { return norm16>=MIN_NORMAL_MAYBE_YES ? getCCFromNormalYesOrMaybe(norm16) : 0; } uint8_t getCCFromYesOrMaybeCP(UChar32 c) const { if (c < minCompNoMaybeCP) { return 0; } return getCCFromYesOrMaybe(getNorm16(c)); } /** * Returns the FCD data for code point c. * @param c A Unicode code point. * @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0. */ uint16_t getFCD16(UChar32 c) const { if(c<minDecompNoCP) { return 0; } else if(c<=0xffff) { if(!singleLeadMightHaveNonZeroFCD16(c)) { return 0; } } return getFCD16FromNormData(c); } /** * Returns the FCD data for the next code point (post-increment). * Might skip only a lead surrogate rather than the whole surrogate pair if none of * the supplementary code points associated with the lead surrogate have non-zero FCD data. * @param s A valid pointer into a string. Requires s!=limit. * @param limit The end of the string, or NULL. * @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0. */ uint16_t nextFCD16(const UChar *&s, const UChar *limit) const { UChar32 c=*s++; if(c<minDecompNoCP || !singleLeadMightHaveNonZeroFCD16(c)) { return 0; } UChar c2; if(U16_IS_LEAD(c) && s!=limit && U16_IS_TRAIL(c2=*s)) { c=U16_GET_SUPPLEMENTARY(c, c2); ++s; } return getFCD16FromNormData(c); } /** * Returns the FCD data for the previous code point (pre-decrement). * @param start The start of the string. * @param s A valid pointer into a string. Requires start<s. * @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0. */ uint16_t previousFCD16(const UChar *start, const UChar *&s) const { UChar32 c=*--s; if(c<minDecompNoCP) { return 0; } if(!U16_IS_TRAIL(c)) { if(!singleLeadMightHaveNonZeroFCD16(c)) { return 0; } } else { UChar c2; if(start<s && U16_IS_LEAD(c2=*(s-1))) { c=U16_GET_SUPPLEMENTARY(c2, c); --s; } } return getFCD16FromNormData(c); } /** Returns TRUE if the single-or-lead code unit c might have non-zero FCD data. */ UBool singleLeadMightHaveNonZeroFCD16(UChar32 lead) const { // 0<=lead<=0xffff uint8_t bits=smallFCD[lead>>8]; if(bits==0) { return false; } return (UBool)((bits>>((lead>>5)&7))&1); } /** Returns the FCD value from the regular normalization data. */ uint16_t getFCD16FromNormData(UChar32 c) const; /** * Gets the decomposition for one code point. * @param c code point * @param buffer out-only buffer for algorithmic decompositions * @param length out-only, takes the length of the decomposition, if any * @return pointer to the decomposition, or NULL if none */ const UChar *getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const; /** * Gets the raw decomposition for one code point. * @param c code point * @param buffer out-only buffer for algorithmic decompositions * @param length out-only, takes the length of the decomposition, if any * @return pointer to the decomposition, or NULL if none */ const UChar *getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const; UChar32 composePair(UChar32 a, UChar32 b) const; UBool isCanonSegmentStarter(UChar32 c) const; UBool getCanonStartSet(UChar32 c, UnicodeSet &set) const; enum { // Fixed norm16 values. MIN_YES_YES_WITH_CC=0xfe02, JAMO_VT=0xfe00, MIN_NORMAL_MAYBE_YES=0xfc00, JAMO_L=2, // offset=1 hasCompBoundaryAfter=FALSE INERT=1, // offset=0 hasCompBoundaryAfter=TRUE // norm16 bit 0 is comp-boundary-after. HAS_COMP_BOUNDARY_AFTER=1, OFFSET_SHIFT=1, // For algorithmic one-way mappings, norm16 bits 2..1 indicate the // tccc (0, 1, >1) for quick FCC boundary-after tests. DELTA_TCCC_0=0, DELTA_TCCC_1=2, DELTA_TCCC_GT_1=4, DELTA_TCCC_MASK=6, DELTA_SHIFT=3, MAX_DELTA=0x40 }; enum { // Byte offsets from the start of the data, after the generic header. IX_NORM_TRIE_OFFSET, IX_EXTRA_DATA_OFFSET, IX_SMALL_FCD_OFFSET, IX_RESERVED3_OFFSET, IX_RESERVED4_OFFSET, IX_RESERVED5_OFFSET, IX_RESERVED6_OFFSET, IX_TOTAL_SIZE, // Code point thresholds for quick check codes. IX_MIN_DECOMP_NO_CP, IX_MIN_COMP_NO_MAYBE_CP, // Norm16 value thresholds for quick check combinations and types of extra data. /** Mappings & compositions in [minYesNo..minYesNoMappingsOnly[. */ IX_MIN_YES_NO, /** Mappings are comp-normalized. */ IX_MIN_NO_NO, IX_LIMIT_NO_NO, IX_MIN_MAYBE_YES, /** Mappings only in [minYesNoMappingsOnly..minNoNo[. */ IX_MIN_YES_NO_MAPPINGS_ONLY, /** Mappings are not comp-normalized but have a comp boundary before. */ IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE, /** Mappings do not have a comp boundary before. */ IX_MIN_NO_NO_COMP_NO_MAYBE_CC, /** Mappings to the empty string. */ IX_MIN_NO_NO_EMPTY, IX_MIN_LCCC_CP, IX_RESERVED19, IX_COUNT }; enum { MAPPING_HAS_CCC_LCCC_WORD=0x80, MAPPING_HAS_RAW_MAPPING=0x40, // unused bit 0x20, MAPPING_LENGTH_MASK=0x1f }; enum { COMP_1_LAST_TUPLE=0x8000, COMP_1_TRIPLE=1, COMP_1_TRAIL_LIMIT=0x3400, COMP_1_TRAIL_MASK=0x7ffe, COMP_1_TRAIL_SHIFT=9, // 10-1 for the "triple" bit COMP_2_TRAIL_SHIFT=6, COMP_2_TRAIL_MASK=0xffc0 }; // higher-level functionality ------------------------------------------ *** // NFD without an NFD Normalizer2 instance. UnicodeString &decompose(const UnicodeString &src, UnicodeString &dest, UErrorCode &errorCode) const; /** * Decomposes [src, limit[ and writes the result to dest. * limit can be NULL if src is NUL-terminated. * destLengthEstimate is the initial dest buffer capacity and can be -1. */ void decompose(const UChar *src, const UChar *limit, UnicodeString &dest, int32_t destLengthEstimate, UErrorCode &errorCode) const; const UChar *decompose(const UChar *src, const UChar *limit, ReorderingBuffer *buffer, UErrorCode &errorCode) const; void decomposeAndAppend(const UChar *src, const UChar *limit, UBool doDecompose, UnicodeString &safeMiddle, ReorderingBuffer &buffer, UErrorCode &errorCode) const; UBool compose(const UChar *src, const UChar *limit, UBool onlyContiguous, UBool doCompose, ReorderingBuffer &buffer, UErrorCode &errorCode) const; const UChar *composeQuickCheck(const UChar *src, const UChar *limit, UBool onlyContiguous, UNormalizationCheckResult *pQCResult) const; void composeAndAppend(const UChar *src, const UChar *limit, UBool doCompose, UBool onlyContiguous, UnicodeString &safeMiddle, ReorderingBuffer &buffer, UErrorCode &errorCode) const; /** sink==nullptr: isNormalized() */ UBool composeUTF8(uint32_t options, UBool onlyContiguous, const uint8_t *src, const uint8_t *limit, ByteSink *sink, icu::Edits *edits, UErrorCode &errorCode) const; const UChar *makeFCD(const UChar *src, const UChar *limit, ReorderingBuffer *buffer, UErrorCode &errorCode) const; void makeFCDAndAppend(const UChar *src, const UChar *limit, UBool doMakeFCD, UnicodeString &safeMiddle, ReorderingBuffer &buffer, UErrorCode &errorCode) const; UBool hasDecompBoundaryBefore(UChar32 c) const; UBool norm16HasDecompBoundaryBefore(uint16_t norm16) const; UBool hasDecompBoundaryAfter(UChar32 c) const; UBool norm16HasDecompBoundaryAfter(uint16_t norm16) const; UBool isDecompInert(UChar32 c) const { return isDecompYesAndZeroCC(getNorm16(c)); } UBool hasCompBoundaryBefore(UChar32 c) const { return c<minCompNoMaybeCP || norm16HasCompBoundaryBefore(getNorm16(c)); } UBool hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous) const { return norm16HasCompBoundaryAfter(getNorm16(c), onlyContiguous); } UBool isCompInert(UChar32 c, UBool onlyContiguous) const { uint16_t norm16=getNorm16(c); return isCompYesAndZeroCC(norm16) && (norm16 & HAS_COMP_BOUNDARY_AFTER) != 0 && (!onlyContiguous || isInert(norm16) || *getMapping(norm16) <= 0x1ff); } UBool hasFCDBoundaryBefore(UChar32 c) const { return hasDecompBoundaryBefore(c); } UBool hasFCDBoundaryAfter(UChar32 c) const { return hasDecompBoundaryAfter(c); } UBool isFCDInert(UChar32 c) const { return getFCD16(c)<=1; } private: friend class InitCanonIterData; friend class LcccContext; UBool isMaybe(uint16_t norm16) const { return minMaybeYes<=norm16 && norm16<=JAMO_VT; } UBool isMaybeOrNonZeroCC(uint16_t norm16) const { return norm16>=minMaybeYes; } static UBool isInert(uint16_t norm16) { return norm16==INERT; } static UBool isJamoL(uint16_t norm16) { return norm16==JAMO_L; } static UBool isJamoVT(uint16_t norm16) { return norm16==JAMO_VT; } uint16_t hangulLVT() const { return minYesNoMappingsOnly|HAS_COMP_BOUNDARY_AFTER; } UBool isHangulLV(uint16_t norm16) const { return norm16==minYesNo; } UBool isHangulLVT(uint16_t norm16) const { return norm16==hangulLVT(); } UBool isCompYesAndZeroCC(uint16_t norm16) const { return norm16<minNoNo; } // UBool isCompYes(uint16_t norm16) const { // return norm16>=MIN_YES_YES_WITH_CC || norm16<minNoNo; // } // UBool isCompYesOrMaybe(uint16_t norm16) const { // return norm16<minNoNo || minMaybeYes<=norm16; // } // UBool hasZeroCCFromDecompYes(uint16_t norm16) const { // return norm16<=MIN_NORMAL_MAYBE_YES || norm16==JAMO_VT; // } UBool isDecompYesAndZeroCC(uint16_t norm16) const { return norm16<minYesNo || norm16==JAMO_VT || (minMaybeYes<=norm16 && norm16<=MIN_NORMAL_MAYBE_YES); } /** * A little faster and simpler than isDecompYesAndZeroCC() but does not include * the MaybeYes which combine-forward and have ccc=0. * (Standard Unicode 10 normalization does not have such characters.) */ UBool isMostDecompYesAndZeroCC(uint16_t norm16) const { return norm16<minYesNo || norm16==MIN_NORMAL_MAYBE_YES || norm16==JAMO_VT; } UBool isDecompNoAlgorithmic(uint16_t norm16) const { return norm16>=limitNoNo; } // For use with isCompYes(). // Perhaps the compiler can combine the two tests for MIN_YES_YES_WITH_CC. // static uint8_t getCCFromYes(uint16_t norm16) { // return norm16>=MIN_YES_YES_WITH_CC ? getCCFromNormalYesOrMaybe(norm16) : 0; // } uint8_t getCCFromNoNo(uint16_t norm16) const { const uint16_t *mapping=getMapping(norm16); if(*mapping&MAPPING_HAS_CCC_LCCC_WORD) { return (uint8_t)*(mapping-1); } else { return 0; } } // requires that the [cpStart..cpLimit[ character passes isCompYesAndZeroCC() uint8_t getTrailCCFromCompYesAndZeroCC(uint16_t norm16) const { if(norm16<=minYesNo) { return 0; // yesYes and Hangul LV have ccc=tccc=0 } else { // For Hangul LVT we harmlessly fetch a firstUnit with tccc=0 here. return (uint8_t)(*getMapping(norm16)>>8); // tccc from yesNo } } uint8_t getPreviousTrailCC(const UChar *start, const UChar *p) const; uint8_t getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const; // Requires algorithmic-NoNo. UChar32 mapAlgorithmic(UChar32 c, uint16_t norm16) const { return c+(norm16>>DELTA_SHIFT)-centerNoNoDelta; } UChar32 getAlgorithmicDelta(uint16_t norm16) const { return (norm16>>DELTA_SHIFT)-centerNoNoDelta; } // Requires minYesNo<norm16<limitNoNo. const uint16_t *getMapping(uint16_t norm16) const { return extraData+(norm16>>OFFSET_SHIFT); } const uint16_t *getCompositionsListForDecompYes(uint16_t norm16) const { if(norm16<JAMO_L || MIN_NORMAL_MAYBE_YES<=norm16) { return NULL; } else if(norm16<minMaybeYes) { return getMapping(norm16); // for yesYes; if Jamo L: harmless empty list } else { return maybeYesCompositions+norm16-minMaybeYes; } } const uint16_t *getCompositionsListForComposite(uint16_t norm16) const { // A composite has both mapping & compositions list. const uint16_t *list=getMapping(norm16); return list+ // mapping pointer 1+ // +1 to skip the first unit with the mapping length (*list&MAPPING_LENGTH_MASK); // + mapping length } const uint16_t *getCompositionsListForMaybe(uint16_t norm16) const { // minMaybeYes<=norm16<MIN_NORMAL_MAYBE_YES return maybeYesCompositions+((norm16-minMaybeYes)>>OFFSET_SHIFT); } /** * @param c code point must have compositions * @return compositions list pointer */ const uint16_t *getCompositionsList(uint16_t norm16) const { return isDecompYes(norm16) ? getCompositionsListForDecompYes(norm16) : getCompositionsListForComposite(norm16); } const UChar *copyLowPrefixFromNulTerminated(const UChar *src, UChar32 minNeedDataCP, ReorderingBuffer *buffer, UErrorCode &errorCode) const; const UChar *decomposeShort(const UChar *src, const UChar *limit, UBool stopAtCompBoundary, UBool onlyContiguous, ReorderingBuffer &buffer, UErrorCode &errorCode) const; UBool decompose(UChar32 c, uint16_t norm16, ReorderingBuffer &buffer, UErrorCode &errorCode) const; const uint8_t *decomposeShort(const uint8_t *src, const uint8_t *limit, UBool stopAtCompBoundary, UBool onlyContiguous, ReorderingBuffer &buffer, UErrorCode &errorCode) const; static int32_t combine(const uint16_t *list, UChar32 trail); void addComposites(const uint16_t *list, UnicodeSet &set) const; void recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex, UBool onlyContiguous) const; UBool hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const { return c<minCompNoMaybeCP || norm16HasCompBoundaryBefore(norm16); } UBool norm16HasCompBoundaryBefore(uint16_t norm16) const { return norm16 < minNoNoCompNoMaybeCC || isAlgorithmicNoNo(norm16); } UBool hasCompBoundaryBefore(const UChar *src, const UChar *limit) const; UBool hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const; UBool hasCompBoundaryAfter(const UChar *start, const UChar *p, UBool onlyContiguous) const; UBool hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p, UBool onlyContiguous) const; UBool norm16HasCompBoundaryAfter(uint16_t norm16, UBool onlyContiguous) const { return (norm16 & HAS_COMP_BOUNDARY_AFTER) != 0 && (!onlyContiguous || isTrailCC01ForCompBoundaryAfter(norm16)); } /** For FCC: Given norm16 HAS_COMP_BOUNDARY_AFTER, does it have tccc<=1? */ UBool isTrailCC01ForCompBoundaryAfter(uint16_t norm16) const { return isInert(norm16) || (isDecompNoAlgorithmic(norm16) ? (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1 : *getMapping(norm16) <= 0x1ff); } const UChar *findPreviousCompBoundary(const UChar *start, const UChar *p, UBool onlyContiguous) const; const UChar *findNextCompBoundary(const UChar *p, const UChar *limit, UBool onlyContiguous) const; const UChar *findPreviousFCDBoundary(const UChar *start, const UChar *p) const; const UChar *findNextFCDBoundary(const UChar *p, const UChar *limit) const; void makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16, CanonIterData &newData, UErrorCode &errorCode) const; int32_t getCanonValue(UChar32 c) const; const UnicodeSet &getCanonStartSet(int32_t n) const; // UVersionInfo dataVersion; // BMP code point thresholds for quick check loops looking at single UTF-16 code units. UChar minDecompNoCP; UChar minCompNoMaybeCP; UChar minLcccCP; // Norm16 value thresholds for quick check combinations and types of extra data. uint16_t minYesNo; uint16_t minYesNoMappingsOnly; uint16_t minNoNo; uint16_t minNoNoCompBoundaryBefore; uint16_t minNoNoCompNoMaybeCC; uint16_t minNoNoEmpty; uint16_t limitNoNo; uint16_t centerNoNoDelta; uint16_t minMaybeYes; const UCPTrie *normTrie; const uint16_t *maybeYesCompositions; const uint16_t *extraData; // mappings and/or compositions for yesYes, yesNo & noNo characters const uint8_t *smallFCD; // [0x100] one bit per 32 BMP code points, set if any FCD!=0 UInitOnce fCanonIterDataInitOnce; CanonIterData *fCanonIterData; }; // bits in canonIterData #define CANON_NOT_SEGMENT_STARTER 0x80000000 #define CANON_HAS_COMPOSITIONS 0x40000000 #define CANON_HAS_SET 0x200000 #define CANON_VALUE_MASK 0x1fffff /** * ICU-internal shortcut for quick access to standard Unicode normalization. */ class U_COMMON_API Normalizer2Factory { public: static const Normalizer2 *getFCDInstance(UErrorCode &errorCode); static const Normalizer2 *getFCCInstance(UErrorCode &errorCode); static const Normalizer2 *getNoopInstance(UErrorCode &errorCode); static const Normalizer2 *getInstance(UNormalizationMode mode, UErrorCode &errorCode); static const Normalizer2Impl *getNFCImpl(UErrorCode &errorCode); static const Normalizer2Impl *getNFKCImpl(UErrorCode &errorCode); static const Normalizer2Impl *getNFKC_CFImpl(UErrorCode &errorCode); // Get the Impl instance of the Normalizer2. // Must be used only when it is known that norm2 is a Normalizer2WithImpl instance. static const Normalizer2Impl *getImpl(const Normalizer2 *norm2); private: Normalizer2Factory(); // No instantiation. }; U_NAMESPACE_END U_CAPI int32_t U_EXPORT2 unorm2_swap(const UDataSwapper *ds, const void *inData, int32_t length, void *outData, UErrorCode *pErrorCode); /** * Get the NF*_QC property for a code point, for u_getIntPropertyValue(). * @internal */ U_CFUNC UNormalizationCheckResult unorm_getQuickCheck(UChar32 c, UNormalizationMode mode); /** * Gets the 16-bit FCD value (lead & trail CCs) for a code point, for u_getIntPropertyValue(). * @internal */ U_CFUNC uint16_t unorm_getFCD16(UChar32 c); /** * Format of Normalizer2 .nrm data files. * Format version 4.0. * * Normalizer2 .nrm data files provide data for the Unicode Normalization algorithms. * ICU ships with data files for standard Unicode Normalization Forms * NFC and NFD (nfc.nrm), NFKC and NFKD (nfkc.nrm) and NFKC_Casefold (nfkc_cf.nrm). * Custom (application-specific) data can be built into additional .nrm files * with the gennorm2 build tool. * ICU ships with one such file, uts46.nrm, for the implementation of UTS #46. * * Normalizer2.getInstance() causes a .nrm file to be loaded, unless it has been * cached already. Internally, Normalizer2Impl.load() reads the .nrm file. * * A .nrm file begins with a standard ICU data file header * (DataHeader, see ucmndata.h and unicode/udata.h). * The UDataInfo.dataVersion field usually contains the Unicode version * for which the data was generated. * * After the header, the file contains the following parts. * Constants are defined as enum values of the Normalizer2Impl class. * * Many details of the data structures are described in the design doc * which is at http://site.icu-project.org/design/normalization/custom * * int32_t indexes[indexesLength]; -- indexesLength=indexes[IX_NORM_TRIE_OFFSET]/4; * * The first eight indexes are byte offsets in ascending order. * Each byte offset marks the start of the next part in the data file, * and the end of the previous one. * When two consecutive byte offsets are the same, then the corresponding part is empty. * Byte offsets are offsets from after the header, * that is, from the beginning of the indexes[]. * Each part starts at an offset with proper alignment for its data. * If necessary, the previous part may include padding bytes to achieve this alignment. * * minDecompNoCP=indexes[IX_MIN_DECOMP_NO_CP] is the lowest code point * with a decomposition mapping, that is, with NF*D_QC=No. * minCompNoMaybeCP=indexes[IX_MIN_COMP_NO_MAYBE_CP] is the lowest code point * with NF*C_QC=No (has a one-way mapping) or Maybe (combines backward). * minLcccCP=indexes[IX_MIN_LCCC_CP] (index 18, new in formatVersion 3) * is the lowest code point with lccc!=0. * * The next eight indexes are thresholds of 16-bit trie values for ranges of * values indicating multiple normalization properties. * They are listed here in threshold order, not in the order they are stored in the indexes. * minYesNo=indexes[IX_MIN_YES_NO]; * minYesNoMappingsOnly=indexes[IX_MIN_YES_NO_MAPPINGS_ONLY]; * minNoNo=indexes[IX_MIN_NO_NO]; * minNoNoCompBoundaryBefore=indexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]; * minNoNoCompNoMaybeCC=indexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC]; * minNoNoEmpty=indexes[IX_MIN_NO_NO_EMPTY]; * limitNoNo=indexes[IX_LIMIT_NO_NO]; * minMaybeYes=indexes[IX_MIN_MAYBE_YES]; * See the normTrie description below and the design doc for details. * * UCPTrie normTrie; -- see ucptrie_impl.h and ucptrie.h, same as Java CodePointTrie * * The trie holds the main normalization data. Each code point is mapped to a 16-bit value. * Rather than using independent bits in the value (which would require more than 16 bits), * information is extracted primarily via range checks. * Except, format version 3 uses bit 0 for hasCompBoundaryAfter(). * For example, a 16-bit value norm16 in the range minYesNo<=norm16<minNoNo * means that the character has NF*C_QC=Yes and NF*D_QC=No properties, * which means it has a two-way (round-trip) decomposition mapping. * Values in the range 2<=norm16<limitNoNo are also directly indexes into the extraData * pointing to mappings, compositions lists, or both. * Value norm16==INERT (0 in versions 1 & 2, 1 in version 3) * means that the character is normalization-inert, that is, * it does not have a mapping, does not participate in composition, has a zero * canonical combining class, and forms a boundary where text before it and after it * can be normalized independently. * For details about how multiple properties are encoded in 16-bit values * see the design doc. * Note that the encoding cannot express all combinations of the properties involved; * it only supports those combinations that are allowed by * the Unicode Normalization algorithms. Details are in the design doc as well. * The gennorm2 tool only builds .nrm files for data that conforms to the limitations. * * The trie has a value for each lead surrogate code unit representing the "worst case" * properties of the 1024 supplementary characters whose UTF-16 form starts with * the lead surrogate. If all of the 1024 supplementary characters are normalization-inert, * then their lead surrogate code unit has the trie value INERT. * When the lead surrogate unit's value exceeds the quick check minimum during processing, * the properties for the full supplementary code point need to be looked up. * * uint16_t maybeYesCompositions[MIN_NORMAL_MAYBE_YES-minMaybeYes]; * uint16_t extraData[]; * * There is only one byte offset for the end of these two arrays. * The split between them is given by the constant and variable mentioned above. * In version 3, the difference must be shifted right by OFFSET_SHIFT. * * The maybeYesCompositions array contains compositions lists for characters that * combine both forward (as starters in composition pairs) * and backward (as trailing characters in composition pairs). * Such characters do not occur in Unicode 5.2 but are allowed by * the Unicode Normalization algorithms. * If there are no such characters, then minMaybeYes==MIN_NORMAL_MAYBE_YES * and the maybeYesCompositions array is empty. * If there are such characters, then minMaybeYes is subtracted from their norm16 values * to get the index into this array. * * The extraData array contains compositions lists for "YesYes" characters, * followed by mappings and optional compositions lists for "YesNo" characters, * followed by only mappings for "NoNo" characters. * (Referring to pairs of NFC/NFD quick check values.) * The norm16 values of those characters are directly indexes into the extraData array. * In version 3, the norm16 values must be shifted right by OFFSET_SHIFT * for accessing extraData. * * The data structures for compositions lists and mappings are described in the design doc. * * uint8_t smallFCD[0x100]; -- new in format version 2 * * This is a bit set to help speed up FCD value lookups in the absence of a full * UTrie2 or other large data structure with the full FCD value mapping. * * Each smallFCD bit is set if any of the corresponding 32 BMP code points * has a non-zero FCD value (lccc!=0 or tccc!=0). * Bit 0 of smallFCD[0] is for U+0000..U+001F. Bit 7 of smallFCD[0xff] is for U+FFE0..U+FFFF. * A bit for 32 lead surrogates is set if any of the 32k corresponding * _supplementary_ code points has a non-zero FCD value. * * This bit set is most useful for the large blocks of CJK characters with FCD=0. * * Changes from format version 1 to format version 2 --------------------------- * * - Addition of data for raw (not recursively decomposed) mappings. * + The MAPPING_NO_COMP_BOUNDARY_AFTER bit in the extraData is now also set when * the mapping is to an empty string or when the character combines-forward. * This subsumes the one actual use of the MAPPING_PLUS_COMPOSITION_LIST bit which * is then repurposed for the MAPPING_HAS_RAW_MAPPING bit. * + For details see the design doc. * - Addition of indexes[IX_MIN_YES_NO_MAPPINGS_ONLY] and separation of the yesNo extraData into * distinct ranges (combines-forward vs. not) * so that a range check can be used to find out if there is a compositions list. * This is fully equivalent with formatVersion 1's MAPPING_PLUS_COMPOSITION_LIST flag. * It is needed for the new (in ICU 49) composePair(), not for other normalization. * - Addition of the smallFCD[] bit set. * * Changes from format version 2 to format version 3 (ICU 60) ------------------ * * - norm16 bit 0 indicates hasCompBoundaryAfter(), * except that for contiguous composition (FCC) the tccc must be checked as well. * Data indexes and ccc values are shifted left by one (OFFSET_SHIFT). * Thresholds like minNoNo are tested before shifting. * * - Algorithmic mapping deltas are shifted left by two more bits (total DELTA_SHIFT), * to make room for two bits (three values) indicating whether the tccc is 0, 1, or greater. * See DELTA_TCCC_MASK etc. * This helps with fetching tccc/FCD values and FCC hasCompBoundaryAfter(). * minMaybeYes is 8-aligned so that the DELTA_TCCC_MASK bits can be tested directly. * * - Algorithmic mappings are only used for mapping to "comp yes and ccc=0" characters, * and ASCII characters are mapped algorithmically only to other ASCII characters. * This helps with hasCompBoundaryBefore() and compose() fast paths. * It is never necessary any more to loop for algorithmic mappings. * * - Addition of indexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE], * indexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC], and indexes[IX_MIN_NO_NO_EMPTY], * and separation of the noNo extraData into distinct ranges. * With this, the noNo norm16 value indicates whether the mapping is * compose-normalized, not normalized but hasCompBoundaryBefore(), * not even that, or maps to an empty string. * hasCompBoundaryBefore() can be determined solely from the norm16 value. * * - The norm16 value for Hangul LVT is now different from that for Hangul LV, * so that hasCompBoundaryAfter() need not check for the syllable type. * For Hangul LV, minYesNo continues to be used (no comp-boundary-after). * For Hangul LVT, minYesNoMappingsOnly|HAS_COMP_BOUNDARY_AFTER is used. * The extraData units at these indexes are set to firstUnit=2 and firstUnit=3, respectively, * to simplify some code. * * - The extraData firstUnit bit 5 is no longer necessary * (norm16 bit 0 used instead of firstUnit MAPPING_NO_COMP_BOUNDARY_AFTER), * is reserved again, and always set to 0. * * - Addition of indexes[IX_MIN_LCCC_CP], the first code point where lccc!=0. * This used to be hardcoded to U+0300, but in data like NFKC_Casefold it is lower: * U+00AD Soft Hyphen maps to an empty string, * which is artificially assigned "worst case" values lccc=1 and tccc=255. * * - A mapping to an empty string has explicit lccc=1 and tccc=255 values. * * Changes from format version 3 to format version 4 (ICU 63) ------------------ * * Switched from UTrie2 to UCPTrie/CodePointTrie. * * The new trie no longer stores different values for surrogate code *units* vs. * surrogate code *points*. * Lead surrogates still have values for optimized UTF-16 string processing. * When looking up code point properties, the code now checks for lead surrogates and * treats them as inert. * * gennorm2 now has to reject mappings for surrogate code points. * UTS #46 maps unpaired surrogates to U+FFFD in code rather than via its * custom normalization data file. */ #endif /* !UCONFIG_NO_NORMALIZATION */ #endif /* __NORMALIZER2IMPL_H__ */