// Copyright 2016 The Gemmlowp Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // test_fixedpoint.cc: unit tests covering the fixedpoint/ directory. #define GEMMLOWP_ENABLE_FIXEDPOINT_CONSTANTS_CHECKS #include <algorithm> #include <cmath> #include <random> #include <vector> #include "test.h" #include "../fixedpoint/fixedpoint.h" namespace gemmlowp { namespace { // Explanation of SimdVector type and associated functions // (LoadSimdVector, StoreSimdVector): // The fixedpoint stuff being tested here is generic in an underlying // integer type which may be either scalar (int32_t) or SIMD (e.g. // NEON int32x4_t). We want to write uniform tests that can test // both the scalar and SIMD paths. We achieve this by having this // generic SimdVector abstraction, local to this test. #ifdef GEMMLOWP_NEON using SimdVector = int32x4_t; constexpr std::size_t SimdVectorSize = 4; SimdVector LoadSimdVector(const std::int32_t* src) { return vld1q_s32(src); } void StoreSimdVector(std::int32_t* dst, SimdVector v) { vst1q_s32(dst, v); } #elif defined(GEMMLOWP_SSE4) using SimdVector = __m128i; constexpr std::size_t SimdVectorSize = 4; SimdVector LoadSimdVector(const std::int32_t* src) { return _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); } void StoreSimdVector(std::int32_t* dst, SimdVector v) { _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), v); } #else using SimdVector = std::int32_t; constexpr std::size_t SimdVectorSize = 1; SimdVector LoadSimdVector(const std::int32_t* src) { return *src; } void StoreSimdVector(std::int32_t* dst, SimdVector v) { *dst = v; } #endif // Explanation of UnaryOpBase, its *Op subclasses below, and TestUnaryOp: // Most (though not all) of the fixedpoint functionality being tested // consists of functions taking one fixedpoint value and returning one // fixedpoint value, e.g. "exp" or "tanh". We call them "unary operators". // We factor a lot of testing boilerplate into a common TestUnaryOp function // taking a "unary op" object that fully describes the function to be tested. // These objects inherit UnaryOpBase mostly as a means to share some default // values for some properties. // // An important design element here is that the fixed-point values are passed // around as raw integers (e.g. int32_t or SIMD types such as int32x4_t), not // as higher-level FixedPoint objects. The motivation for this design is 1) to // avoid having to templatize everything in the tIntegerBits parameter of // class FixedPoint, and 2) to allow directly testing low-level functions // operating on raw types (e.g. RoundingDivideByPOT) without needlessly // requiring // wrapping raw values in FixedPoint objects. class UnaryOpBase { public: // Min bound of the input range of this op. For example, an op only handling // nonnegative values would return 0. std::int32_t MinInput() const { return std::numeric_limits<std::int32_t>::min(); } // Max bound of the input range of this op. For example, an op only handling // nonpositive values would return 0. std::int32_t MaxInput() const { return std::numeric_limits<std::int32_t>::max(); } // Tolerated difference between actual and reference int32 values. // Note that the corresponding real-numbers tolerance depends on the number // of integer bits of the fixed-point representation of the results of this // op. // For example, for an op returning fixed-point values with 0 integer bits, // the correspondence between real-number values and raw values is // real_number = (2^31) * raw_value. std::int32_t Tolerance() const { return 0; } }; // Op wrapping RoundingDivideByPOT class RoundingDivideByPOTOp final : public UnaryOpBase { public: RoundingDivideByPOTOp(int exponent) : exponent_(exponent) {} std::int32_t ReferenceOp(std::int32_t x) const { const double d = static_cast<double>(x) / (1ll << exponent_); return static_cast<std::int32_t>(std::round(d)); } template <typename tRawType> tRawType Op(tRawType x) const { return RoundingDivideByPOT(x, exponent_); } private: const int exponent_; }; // Op wrapping SaturatingRoundingMultiplyByPOT template <int tExponent> class SaturatingRoundingMultiplyByPOTOp final : public UnaryOpBase { public: std::int32_t ReferenceOp(std::int32_t x) const { const double d = static_cast<double>(x) * std::pow(2., tExponent); const double clamp_min = std::numeric_limits<std::int32_t>::min(); const double clamp_max = std::numeric_limits<std::int32_t>::max(); const double clamped = std::min(clamp_max, std::max(clamp_min, d)); return static_cast<std::int32_t>(std::round(clamped)); } template <typename tRawType> tRawType Op(tRawType x) const { return SaturatingRoundingMultiplyByPOT<tExponent>(x); } }; // Op wrapping exp_on_interval_between_negative_one_quarter_and_0_excl class ExpOnIntervalBetweenNegativeOneQuarterAnd0ExclOp final : public UnaryOpBase { public: std::int32_t MinInput() const { return -(1 << 29); } std::int32_t MaxInput() const { return 0; } std::int32_t Tolerance() const { return 500; } std::int32_t ReferenceOp(std::int32_t x) const { using F = FixedPoint<std::int32_t, 0>; const double d = ToDouble(F::FromRaw(x)); const double e = std::exp(d); return F::FromDouble(e).raw(); } template <typename tRawType> tRawType Op(tRawType x) const { using F = FixedPoint<tRawType, 0>; const F f = F::FromRaw(x); const F e = exp_on_interval_between_negative_one_quarter_and_0_excl(f); return e.raw(); } }; // Op wrapping exp_on_negative_values template <int tIntegerBits> class ExpOnNegativeValuesOp final : public UnaryOpBase { public: std::int32_t MaxInput() const { return 0; } std::int32_t Tolerance() const { return 500; } std::int32_t ReferenceOp(std::int32_t x) const { using F = FixedPoint<std::int32_t, tIntegerBits>; using F0 = FixedPoint<std::int32_t, 0>; const double d = ToDouble(F::FromRaw(x)); const double e = std::exp(d); return F0::FromDouble(e).raw(); } template <typename tRawType> tRawType Op(tRawType x) const { using F = FixedPoint<tRawType, tIntegerBits>; const F f = F::FromRaw(x); return exp_on_negative_values(f).raw(); } }; // Op wrapping one_minus_x_over_one_plus_x_for_x_in_0_1 class OneMinusXOverOnePlusXForXIn01Op final : public UnaryOpBase { public: std::int32_t MinInput() const { return 0; } std::int32_t Tolerance() const { return 12; } std::int32_t ReferenceOp(std::int32_t x) const { using F = FixedPoint<std::int32_t, 0>; const double d = ToDouble(F::FromRaw(x)); const double e = (1 - d) / (1 + d); return F::FromDouble(e).raw(); } template <typename tRawType> tRawType Op(tRawType x) const { using F = FixedPoint<tRawType, 0>; const F f = F::FromRaw(x); return one_minus_x_over_one_plus_x_for_x_in_0_1(f).raw(); } }; // Op wrapping tanh template <int tIntegerBits> class TanhOp final : public UnaryOpBase { public: std::int32_t Tolerance() const { return 310; } std::int32_t ReferenceOp(std::int32_t x) const { using F = FixedPoint<std::int32_t, tIntegerBits>; using F0 = FixedPoint<std::int32_t, 0>; const double d = ToDouble(F::FromRaw(x)); const double e = std::tanh(d); return F0::FromDouble(e).raw(); } template <typename tRawType> tRawType Op(tRawType x) const { using F = FixedPoint<tRawType, tIntegerBits>; const F f = F::FromRaw(x); return tanh(f).raw(); } }; // Op wrapping one_over_one_plus_x_for_x_in_0_1 class OneOverOnePlusXForXIn01Op final : public UnaryOpBase { public: std::int32_t MinInput() const { return 0; } std::int32_t Tolerance() const { return 6; } std::int32_t ReferenceOp(std::int32_t x) const { using F = FixedPoint<std::int32_t, 0>; const double d = ToDouble(F::FromRaw(x)); const double e = 1 / (1 + d); return F::FromDouble(e).raw(); } template <typename tRawType> tRawType Op(tRawType x) const { using F = FixedPoint<tRawType, 0>; const F f = F::FromRaw(x); return one_over_one_plus_x_for_x_in_0_1(f).raw(); } }; // Op wrapping logistic template <int tIntegerBits> class LogisticOp final : public UnaryOpBase { public: std::int32_t Tolerance() const { return 155; } std::int32_t ReferenceOp(std::int32_t x) const { using F = FixedPoint<std::int32_t, tIntegerBits>; using F0 = FixedPoint<std::int32_t, 0>; const double d = ToDouble(F::FromRaw(x)); const double e = 1 / (1 + std::exp(-d)); return F0::FromDouble(e).raw(); } template <typename tRawType> tRawType Op(tRawType x) const { using F = FixedPoint<tRawType, tIntegerBits>; const F f = F::FromRaw(x); return logistic(f).raw(); } }; // Tests a given op, on a given list of int32 input values. template <typename tUnaryOpType> void TestUnaryOp(const tUnaryOpType& unary_op, const std::vector<std::int32_t>& testvals_int32) { Check(0 == (testvals_int32.size() % SimdVectorSize)); for (std::size_t i = 0; i < testvals_int32.size(); i += SimdVectorSize) { // First, clamp input int32 values accoding to the MinInput() and MaxInput() // bounds returned by the op. std::int32_t input[SimdVectorSize] = {0}; for (std::size_t j = 0; j < SimdVectorSize; j++) { const std::int32_t raw_input = testvals_int32[i + j]; input[j] = std::min(unary_op.MaxInput(), std::max(unary_op.MinInput(), raw_input)); } // Compute reference results and check that the actual results on // scalar inputs agree with them, to the Tolerance() returned by the op. std::int32_t reference[SimdVectorSize] = {0}; std::int32_t actual_scalar[SimdVectorSize] = {0}; for (std::size_t j = 0; j < SimdVectorSize; j++) { reference[j] = unary_op.ReferenceOp(input[j]); actual_scalar[j] = unary_op.Op(input[j]); const std::int64_t diff = static_cast<std::int64_t>(actual_scalar[j]) - static_cast<std::int64_t>(reference[j]); Check(std::abs(diff) <= unary_op.Tolerance()); } // Check that the actual results on SIMD inputs agree *exactly* with the // actual results on scalar inputs. I.e. SIMD must make absolutely no // difference // to the results, regardless of the fact that both scalar and SIMD results // may differ from the reference results. std::int32_t actual_simd[SimdVectorSize] = {0}; StoreSimdVector(actual_simd, unary_op.Op(LoadSimdVector(input))); for (std::size_t j = 0; j < SimdVectorSize; j++) { Check(actual_simd[j] == actual_scalar[j]); } } } template <int tIntegerBits> void test_convert(FixedPoint<std::int32_t, tIntegerBits> x) { typedef FixedPoint<std::int32_t, tIntegerBits> F; F y = F::FromDouble(ToDouble(x)); Check(y == x); } template <int tIntegerBits_a, int tIntegerBits_b> void test_Rescale(FixedPoint<std::int32_t, tIntegerBits_a> a) { FixedPoint<std::int32_t, tIntegerBits_b> actual = Rescale<tIntegerBits_b>(a); FixedPoint<std::int32_t, tIntegerBits_b> expected = FixedPoint<std::int32_t, tIntegerBits_b>::FromDouble(ToDouble(a)); Check(actual == expected); } template <int tIntegerBits_a, int tIntegerBits_b> void test_Rescale(const std::vector<std::int32_t>& testvals_int32) { for (auto a : testvals_int32) { FixedPoint<std::int32_t, tIntegerBits_a> aq; aq.raw() = a; test_Rescale<tIntegerBits_a, tIntegerBits_b>(aq); } } template <int tIntegerBits_a, int tIntegerBits_b> void test_mul(FixedPoint<std::int32_t, tIntegerBits_a> a, FixedPoint<std::int32_t, tIntegerBits_b> b) { static const int ProductIntegerBits = tIntegerBits_a + tIntegerBits_b; using ProductFixedPoint = FixedPoint<std::int32_t, ProductIntegerBits>; ProductFixedPoint ab; ab = a * b; double a_double = ToDouble(a); double b_double = ToDouble(b); double ab_double = a_double * b_double; ProductFixedPoint expected = ProductFixedPoint::FromDouble(ab_double); std::int64_t diff = std::int64_t(ab.raw()) - std::int64_t(expected.raw()); Check(std::abs(diff) <= 1); } template <int tIntegerBits_a, int tIntegerBits_b> void test_mul(const std::vector<std::int32_t>& testvals_int32) { for (auto a : testvals_int32) { for (auto b : testvals_int32) { FixedPoint<std::int32_t, tIntegerBits_a> aq; FixedPoint<std::int32_t, tIntegerBits_b> bq; aq.raw() = a; bq.raw() = b; test_mul(aq, bq); } } } template <int tExponent, int tIntegerBits_a> void test_ExactMulByPot(FixedPoint<std::int32_t, tIntegerBits_a> a) { double x = ToDouble(a) * std::pow(2.0, tExponent); double y = ToDouble(ExactMulByPot<tExponent>(a)); Check(x == y); } template <int tExponent, int tIntegerBits_a> void test_ExactMulByPot(const std::vector<std::int32_t>& testvals_int32) { for (auto a : testvals_int32) { FixedPoint<std::int32_t, tIntegerBits_a> aq; aq.raw() = a; test_ExactMulByPot<tExponent, tIntegerBits_a>(aq); } } // Make the list of test values to test each op against. std::vector<std::int32_t> MakeTestValsInt32() { std::vector<std::int32_t> testvals_int32; for (int i = 0; i < 31; i++) { testvals_int32.push_back((1 << i) - 2); testvals_int32.push_back((1 << i) - 1); testvals_int32.push_back((1 << i)); testvals_int32.push_back((1 << i) + 1); testvals_int32.push_back((1 << i) + 2); testvals_int32.push_back(-(1 << i) - 2); testvals_int32.push_back(-(1 << i) - 1); testvals_int32.push_back(-(1 << i)); testvals_int32.push_back(-(1 << i) + 1); testvals_int32.push_back(-(1 << i) + 2); } testvals_int32.push_back(std::numeric_limits<std::int32_t>::min()); testvals_int32.push_back(std::numeric_limits<std::int32_t>::min() + 1); testvals_int32.push_back(std::numeric_limits<std::int32_t>::min() + 2); testvals_int32.push_back(std::numeric_limits<std::int32_t>::max() - 2); testvals_int32.push_back(std::numeric_limits<std::int32_t>::max() - 1); testvals_int32.push_back(std::numeric_limits<std::int32_t>::max()); std::mt19937 random_engine; std::uniform_int_distribution<std::int32_t> uniform_distribution( std::numeric_limits<std::int32_t>::min(), std::numeric_limits<std::int32_t>::max()); for (int i = 0; i < 1000; i++) { testvals_int32.push_back(uniform_distribution(random_engine)); } // SIMD tests will require the length of testvals_int32 to be a multiple // of SIMD vector size. while (testvals_int32.size() % SimdVectorSize) { testvals_int32.push_back(0); } std::sort(testvals_int32.begin(), testvals_int32.end()); return testvals_int32; } } // end anonymous namespace } // end namespace gemmlowp int main() { using namespace gemmlowp; const std::vector<std::int32_t> testvals_int32 = MakeTestValsInt32(); for (int s = 0; s < 32; s++) { TestUnaryOp(RoundingDivideByPOTOp(s), testvals_int32); } TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-31>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-30>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-29>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-17>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-16>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-15>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-4>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-3>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-2>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<-1>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<0>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<1>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<2>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<3>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<4>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<15>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<16>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<17>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<29>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<30>(), testvals_int32); TestUnaryOp(SaturatingRoundingMultiplyByPOTOp<31>(), testvals_int32); TestUnaryOp(ExpOnIntervalBetweenNegativeOneQuarterAnd0ExclOp(), testvals_int32); TestUnaryOp(ExpOnNegativeValuesOp<0>(), testvals_int32); TestUnaryOp(ExpOnNegativeValuesOp<1>(), testvals_int32); TestUnaryOp(ExpOnNegativeValuesOp<2>(), testvals_int32); TestUnaryOp(ExpOnNegativeValuesOp<3>(), testvals_int32); TestUnaryOp(ExpOnNegativeValuesOp<4>(), testvals_int32); TestUnaryOp(ExpOnNegativeValuesOp<5>(), testvals_int32); TestUnaryOp(ExpOnNegativeValuesOp<6>(), testvals_int32); TestUnaryOp(OneMinusXOverOnePlusXForXIn01Op(), testvals_int32); TestUnaryOp(TanhOp<0>(), testvals_int32); TestUnaryOp(TanhOp<1>(), testvals_int32); TestUnaryOp(TanhOp<2>(), testvals_int32); TestUnaryOp(TanhOp<3>(), testvals_int32); TestUnaryOp(TanhOp<4>(), testvals_int32); TestUnaryOp(TanhOp<5>(), testvals_int32); TestUnaryOp(TanhOp<6>(), testvals_int32); TestUnaryOp(OneOverOnePlusXForXIn01Op(), testvals_int32); TestUnaryOp(LogisticOp<0>(), testvals_int32); TestUnaryOp(LogisticOp<1>(), testvals_int32); TestUnaryOp(LogisticOp<2>(), testvals_int32); TestUnaryOp(LogisticOp<3>(), testvals_int32); TestUnaryOp(LogisticOp<4>(), testvals_int32); TestUnaryOp(LogisticOp<5>(), testvals_int32); TestUnaryOp(LogisticOp<6>(), testvals_int32); for (auto a : testvals_int32) { FixedPoint<std::int32_t, 4> x; x.raw() = a; test_convert(x); } test_mul<0, 0>(testvals_int32); test_mul<0, 1>(testvals_int32); test_mul<2, 0>(testvals_int32); test_mul<1, 1>(testvals_int32); test_mul<4, 4>(testvals_int32); test_mul<3, 5>(testvals_int32); test_mul<7, 2>(testvals_int32); test_mul<14, 15>(testvals_int32); test_Rescale<0, 0>(testvals_int32); test_Rescale<0, 1>(testvals_int32); test_Rescale<2, 0>(testvals_int32); test_Rescale<4, 4>(testvals_int32); test_Rescale<4, 5>(testvals_int32); test_Rescale<6, 3>(testvals_int32); test_Rescale<13, 9>(testvals_int32); test_ExactMulByPot<0, 0>(testvals_int32); test_ExactMulByPot<0, 4>(testvals_int32); test_ExactMulByPot<1, 4>(testvals_int32); test_ExactMulByPot<3, 2>(testvals_int32); test_ExactMulByPot<-4, 5>(testvals_int32); test_ExactMulByPot<-2, 6>(testvals_int32); std::cerr << "All tests passed." << std::endl; }