// Copyright 2015 The Gemmlowp Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // pack_neon.h: optimized NEON specializations of the templates in pack.h. #ifndef GEMMLOWP_INTERNAL_PACK_NEON_H_ #define GEMMLOWP_INTERNAL_PACK_NEON_H_ #include "pack.h" #include <arm_neon.h> namespace gemmlowp { typedef SideMap<const std::uint8_t, SideMapOrder::WidthMajor> WidthMajorUint8SideMap; template <int Cells> using DepthMajorSideFormatNCells4x2 = KernelSideFormat<CellFormat<4, 2>, Cells>; template <int Cells> class PackingRegisterBlock< WidthMajorUint8SideMap, PackedSideBlock<DepthMajorSideFormatNCells4x2<Cells>>> : public PackingRegisterBlockBase< WidthMajorUint8SideMap, PackedSideBlock<DepthMajorSideFormatNCells4x2<Cells>>> { public: typedef DepthMajorSideFormatNCells4x2<Cells> KernelSideFormat; typedef typename KernelSideFormat::Cell CellFormat; static const int kCells = KernelSideFormat::kCells; static const int kCellWidth = CellFormat::kWidth; static const int kKernelWidth = CellFormat::kWidth * kCells; static const int kCellDepth = CellFormat::kDepth; static const int kCellSize = CellFormat::kSize; void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) { std::uint8_t* dst_ptr = dst->current_data(); const std::uint8_t* const src_ptr = this->complete_src_.data(); const int stride = this->complete_src_.stride(); // Load source WidthMajor data uint8x16_t src_lines[4 * kCells]; for (int i = 0; i < 4 * kCells; i++) { src_lines[i] = vld1q_u8(src_ptr + i * stride); } // Reorder the data within registers to make DepthMajor 4x2 cells uint8x16x2_t src_lines_intertwined_2x[2 * kCells]; for (int i = 0; i < kCells; i++) { src_lines_intertwined_2x[2 * i] = vzipq_u8(src_lines[4 * i], src_lines[4 * i + 2]); src_lines_intertwined_2x[2 * i + 1] = vzipq_u8(src_lines[4 * i + 1], src_lines[4 * i + 3]); } uint8x16x2_t src_lines_intertwined_4x[2 * kCells]; for (int i = 0; i < kCells; i++) { src_lines_intertwined_4x[2 * i] = vzipq_u8(src_lines_intertwined_2x[2 * i].val[0], src_lines_intertwined_2x[2 * i + 1].val[0]); src_lines_intertwined_4x[2 * i + 1] = vzipq_u8(src_lines_intertwined_2x[2 * i].val[1], src_lines_intertwined_2x[2 * i + 1].val[1]); } // Store the resulting DepthMajor 4x2 cells in the destination packed block for (int outer = 0; outer < 2; outer++) { for (int inner = 0; inner < 2; inner++) { for (int cell = 0; cell < kCells; cell++) { uint8x8_t value = vget_low_u8( src_lines_intertwined_4x[2 * cell + outer].val[inner]); vst1_u8(dst_ptr, value); dst_ptr += 8; } for (int cell = 0; cell < kCells; cell++) { uint8x8_t value = vget_high_u8( src_lines_intertwined_4x[2 * cell + outer].val[inner]); vst1_u8(dst_ptr, value); dst_ptr += 8; } } } // Compute sums across the depth dimension uint16x8_t sums_of_2_cells[kCells][4]; for (int outer = 0; outer < 2; outer++) { for (int inner = 0; inner < 2; inner++) { int i = 2 * outer + inner; for (int cell = 0; cell < kCells; cell++) { sums_of_2_cells[cell][i] = vaddl_u8( vget_low_u8( src_lines_intertwined_4x[2 * cell + outer].val[inner]), vget_high_u8( src_lines_intertwined_4x[2 * cell + outer].val[inner])); } } } int32x4_t sums_of_4_cells[kCells][4]; for (int i = 0; i < 4; i++) { for (int cell = 0; cell < kCells; cell++) { sums_of_4_cells[cell][i] = vreinterpretq_s32_u32( vaddl_u16(vget_low_u16(sums_of_2_cells[cell][i]), vget_high_u16(sums_of_2_cells[cell][i]))); } } // Update the sums_of_each_slice vector for (int cell = 0; cell < kCells; cell++) { int32x4_t s01 = vaddq_s32(sums_of_4_cells[cell][0], sums_of_4_cells[cell][1]); int32x4_t s23 = vaddq_s32(sums_of_4_cells[cell][2], sums_of_4_cells[cell][3]); int32x4_t s = vaddq_s32(s01, s23); std::int32_t* sums_of_each_slice_ptr = dst->sums_of_each_slice() + start_width + 4 * cell; vst1q_s32(sums_of_each_slice_ptr, vaddq_s32(s, vld1q_s32(sums_of_each_slice_ptr))); } dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth); } }; template <int Cells> using WidthMajorSideFormatNCells4x2 = KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, Cells>; template <int Cells> class PackingRegisterBlock< WidthMajorUint8SideMap, PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells>>> : public PackingRegisterBlockBase< WidthMajorUint8SideMap, PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells>>> { public: typedef WidthMajorSideFormatNCells4x2<Cells> KernelSideFormat; typedef typename KernelSideFormat::Cell CellFormat; static const int kCells = KernelSideFormat::kCells; static const int kCellWidth = CellFormat::kWidth; static const int kKernelWidth = CellFormat::kWidth * kCells; static const int kCellDepth = CellFormat::kDepth; static const int kCellSize = CellFormat::kSize; void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) { std::uint8_t* dst_ptr = dst->current_data(); const std::uint8_t* src_ptr = this->complete_src_.data(); const int stride = this->complete_src_.stride(); // Load source WidthMajor data uint16x8_t src_lines[kCells * 4]; for (int i = 0; i < kCells; i++) { // This packing path is used with our current // less-than-8-bit kernel, and the partial unrolling of this loop // results in substantially faster code (thanks to better // register allocation) on Nexus 5. #define GEMMLOWP_UNROLLED_LOOP_ITER(k) \ src_lines[4 * i + k] = vreinterpretq_u16_u8(vld1q_u8(src_ptr)); \ src_ptr += stride; GEMMLOWP_UNROLLED_LOOP_ITER(0) GEMMLOWP_UNROLLED_LOOP_ITER(1) GEMMLOWP_UNROLLED_LOOP_ITER(2) GEMMLOWP_UNROLLED_LOOP_ITER(3) #undef GEMMLOWP_UNROLLED_LOOP_ITER } // Reorder the data within registers to make WidthMajor 4x2 cells uint16x8x2_t src_lines_intertwined_2x[2 * kCells]; for (int i = 0; i < kCells; i++) { src_lines_intertwined_2x[2 * i] = vzipq_u16(src_lines[4 * i], src_lines[4 * i + 2]); src_lines_intertwined_2x[2 * i + 1] = vzipq_u16(src_lines[4 * i + 1], src_lines[4 * i + 3]); } uint16x8x2_t src_lines_intertwined_4x[2 * kCells]; for (int i = 0; i < kCells; i++) { src_lines_intertwined_4x[2 * i] = vzipq_u16(src_lines_intertwined_2x[2 * i].val[0], src_lines_intertwined_2x[2 * i + 1].val[0]); src_lines_intertwined_4x[2 * i + 1] = vzipq_u16(src_lines_intertwined_2x[2 * i].val[1], src_lines_intertwined_2x[2 * i + 1].val[1]); } // Store the resulting WidthMajor 4x2 cells in the destination packed block for (int outer = 0; outer < 2; outer++) { for (int inner = 0; inner < 2; inner++) { for (int cell = 0; cell < kCells; cell++) { uint8x8_t value = vreinterpret_u8_u16(vget_low_u16( src_lines_intertwined_4x[2 * cell + outer].val[inner])); vst1_u8(dst_ptr, value); dst_ptr += 8; } for (int cell = 0; cell < kCells; cell++) { uint8x8_t value = vreinterpret_u8_u16(vget_high_u16( src_lines_intertwined_4x[2 * cell + outer].val[inner])); vst1_u8(dst_ptr, value); dst_ptr += 8; } } } // Compute sums across the depth dimension uint16x8_t sums_of_2[kCells][4]; for (int outer = 0; outer < 2; outer++) { for (int inner = 0; inner < 2; inner++) { int i = 2 * outer + inner; for (int cell = 0; cell < kCells; cell++) { sums_of_2[cell][i] = vpaddlq_u8(vreinterpretq_u8_u16( src_lines_intertwined_4x[2 * cell + outer].val[inner])); } } } uint16x8_t sums_of_4[kCells][2]; for (int i = 0; i < 2; i++) { for (int cell = 0; cell < kCells; cell++) { sums_of_4[cell][i] = vaddq_u16(sums_of_2[cell][2 * i], sums_of_2[cell][2 * i + 1]); } } uint16x8_t sums_of_8[kCells]; for (int cell = 0; cell < kCells; cell++) { sums_of_8[cell] = vaddq_u16(sums_of_4[cell][0], sums_of_4[cell][1]); } uint16x4_t sums_of_16[kCells]; for (int cell = 0; cell < kCells; cell++) { sums_of_16[cell] = vadd_u16(vget_low_u16(sums_of_8[cell]), vget_high_u16(sums_of_8[cell])); } // Update the sums_of_each_slice vector for (int cell = 0; cell < kCells; cell++) { int32x4_t s = vreinterpretq_s32_u32(vmovl_u16(sums_of_16[cell])); std::int32_t* sums_of_each_slice_ptr = dst->sums_of_each_slice() + start_width + 4 * cell; vst1q_s32(sums_of_each_slice_ptr, vaddq_s32(s, vld1q_s32(sums_of_each_slice_ptr))); } dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth); } }; #ifdef GEMMLOWP_NEON_32 inline int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) { const int16x4_t c = vpadd_s16(vget_low_s16(a), vget_high_s16(a)); const int16x4_t d = vpadd_s16(vget_low_s16(b), vget_high_s16(b)); return vcombine_s16(c, d); } #endif template <int Width> using Int8FastKernelFormat = KernelSideFormatInt8<CellFormat<Width, 16, CellOrder::WidthMajor>, 1>; template <int Width> class PackingRegisterBlock<WidthMajorUint8SideMap, PackedSideBlock<Int8FastKernelFormat<Width>>> : public PackingRegisterBlockBase< WidthMajorUint8SideMap, PackedSideBlock<Int8FastKernelFormat<Width>>> { public: static_assert(Width == 2 || Width == 4, ""); typedef Int8FastKernelFormat<Width> KernelSideFormat; typedef typename KernelSideFormat::Cell CellFormat; static const int kCells = KernelSideFormat::kCells; static const int kCellWidth = CellFormat::kWidth; static const int kKernelWidth = CellFormat::kWidth * kCells; static const int kCellDepth = CellFormat::kDepth; static const int kCellSize = CellFormat::kSize; void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) { std::int32_t* sums_ptr = dst->sums_of_each_slice() + start_width; std::uint8_t* dst_ptr = dst->current_data(); const std::uint8_t* const src_ptr = this->complete_src_.data(); const int stride = this->complete_src_.stride(); // Load source WidthMajor data uint8x16_t src_lines[Width]; for (int i = 0; i < Width; i++) { src_lines[i] = vld1q_u8(src_ptr + i * stride); } const uint8x16_t sign_bit_dup = vdupq_n_u8(0x80); for (int i = 0; i < Width; i++) { src_lines[i] = veorq_u8(src_lines[i], sign_bit_dup); } for (int i = 0; i < Width; i++) { vst1q_u8(dst_ptr + 16 * i, src_lines[i]); } int16x8_t sums2[Width]; for (int i = 0; i < Width; i++) { const int8x8_t lo = vreinterpret_s8_u8(vget_low_u8(src_lines[i])); const int8x8_t hi = vreinterpret_s8_u8(vget_high_u8(src_lines[i])); sums2[i] = vaddl_s8(lo, hi); } int16x8_t sums4[Width / 2]; for (int i = 0; i < Width / 2; i++) { sums4[i] = vpaddq_s16(sums2[2 * i], sums2[2 * i + 1]); } if (Width == 4) { int32x4_t sum = vld1q_s32(sums_ptr); int16x8_t sums8 = vpaddq_s16(sums4[0], sums4[1]); sum = vpadalq_s16(sum, sums8); vst1q_s32(sums_ptr, sum); } else { assert(Width == 2); int32x2_t sum = vld1_s32(sums_ptr); int16x4_t sums8 = vpadd_s16(vget_low_s16(sums4[0]), vget_high_s16(sums4[0])); sum = vpadal_s16(sum, sums8); vst1_s32(sums_ptr, sum); } dst->seek_forward_n_cells(1); } }; } // namespace gemmlowp #endif // GEMMLOWP_INTERNAL_PACK_NEON_H_