#ifndef SG_UNALIGNED_H #define SG_UNALIGNED_H /* * Copyright (c) 2014-2017 Douglas Gilbert. * All rights reserved. * Use of this source code is governed by a BSD-style * license that can be found in the BSD_LICENSE file. */ #include <stdint.h> #ifdef __cplusplus extern "C" { #endif /* Borrowed from the Linux kernel, via mhvtl */ /* In the first section below, functions that copy unsigned integers in a * computer's native format, to and from an unaligned big endian sequence of * bytes. Big endian byte format "on the wire" is the default used by SCSI * standards (www.t10.org). Big endian is also the network byte order. */ static inline uint16_t __get_unaligned_be16(const uint8_t *p) { return p[0] << 8 | p[1]; } static inline uint32_t __get_unaligned_be32(const uint8_t *p) { return p[0] << 24 | p[1] << 16 | p[2] << 8 | p[3]; } /* Assume 48 bit value placed in uint64_t */ static inline uint64_t __get_unaligned_be48(const uint8_t *p) { return (uint64_t)__get_unaligned_be16(p) << 32 | __get_unaligned_be32(p + 2); } static inline uint64_t __get_unaligned_be64(const uint8_t *p) { return (uint64_t)__get_unaligned_be32(p) << 32 | __get_unaligned_be32(p + 4); } static inline void __put_unaligned_be16(uint16_t val, uint8_t *p) { *p++ = val >> 8; *p++ = val; } static inline void __put_unaligned_be32(uint32_t val, uint8_t *p) { __put_unaligned_be16(val >> 16, p); __put_unaligned_be16(val, p + 2); } /* Assume 48 bit value placed in uint64_t */ static inline void __put_unaligned_be48(uint64_t val, uint8_t *p) { __put_unaligned_be16(val >> 32, p); __put_unaligned_be32(val, p + 2); } static inline void __put_unaligned_be64(uint64_t val, uint8_t *p) { __put_unaligned_be32(val >> 32, p); __put_unaligned_be32(val, p + 4); } static inline uint16_t sg_get_unaligned_be16(const void *p) { return __get_unaligned_be16((const uint8_t *)p); } static inline uint32_t sg_get_unaligned_be24(const void *p) { return ((const uint8_t *)p)[0] << 16 | ((const uint8_t *)p)[1] << 8 | ((const uint8_t *)p)[2]; } static inline uint32_t sg_get_unaligned_be32(const void *p) { return __get_unaligned_be32((const uint8_t *)p); } /* Assume 48 bit value placed in uint64_t */ static inline uint64_t sg_get_unaligned_be48(const void *p) { return __get_unaligned_be48((const uint8_t *)p); } static inline uint64_t sg_get_unaligned_be64(const void *p) { return __get_unaligned_be64((const uint8_t *)p); } /* Returns 0 if 'num_bytes' is less than or equal to 0 or greater than * 8 (i.e. sizeof(uint64_t)). Else returns result in uint64_t which is * an 8 byte unsigned integer. */ static inline uint64_t sg_get_unaligned_be(int num_bytes, const void *p) { if ((num_bytes <= 0) || (num_bytes > (int)sizeof(uint64_t))) return 0; else { const uint8_t * xp = (const uint8_t *)p; uint64_t res = *xp; for (++xp; num_bytes > 1; ++xp, --num_bytes) res = (res << 8) | *xp; return res; } } static inline void sg_put_unaligned_be16(uint16_t val, void *p) { __put_unaligned_be16(val, (uint8_t *)p); } static inline void sg_put_unaligned_be24(uint32_t val, void *p) { ((uint8_t *)p)[0] = (val >> 16) & 0xff; ((uint8_t *)p)[1] = (val >> 8) & 0xff; ((uint8_t *)p)[2] = val & 0xff; } static inline void sg_put_unaligned_be32(uint32_t val, void *p) { __put_unaligned_be32(val, (uint8_t *)p); } /* Assume 48 bit value placed in uint64_t */ static inline void sg_put_unaligned_be48(uint64_t val, void *p) { __put_unaligned_be48(val, (uint8_t *)p); } static inline void sg_put_unaligned_be64(uint64_t val, void *p) { __put_unaligned_be64(val, (uint8_t *)p); } /* Since cdb and parameter blocks are often memset to zero before these * unaligned function partially fill them, then check for a val of zero * and ignore if it is with these variants. */ static inline void sg_nz_put_unaligned_be16(uint16_t val, void *p) { if (val) __put_unaligned_be16(val, (uint8_t *)p); } static inline void sg_nz_put_unaligned_be24(uint32_t val, void *p) { if (val) { ((uint8_t *)p)[0] = (val >> 16) & 0xff; ((uint8_t *)p)[1] = (val >> 8) & 0xff; ((uint8_t *)p)[2] = val & 0xff; } } static inline void sg_nz_put_unaligned_be32(uint32_t val, void *p) { if (val) __put_unaligned_be32(val, (uint8_t *)p); } static inline void sg_nz_put_unaligned_be64(uint64_t val, void *p) { if (val) __put_unaligned_be64(val, (uint8_t *)p); } /* Below are the little endian equivalents of the big endian functions * above. Little endian is used by ATA, PCI and NVMe. */ static inline uint16_t __get_unaligned_le16(const uint8_t *p) { return p[1] << 8 | p[0]; } static inline uint32_t __get_unaligned_le32(const uint8_t *p) { return p[3] << 24 | p[2] << 16 | p[1] << 8 | p[0]; } static inline uint64_t __get_unaligned_le64(const uint8_t *p) { return (uint64_t)__get_unaligned_le32(p + 4) << 32 | __get_unaligned_le32(p); } static inline void __put_unaligned_le16(uint16_t val, uint8_t *p) { *p++ = val; *p++ = val >> 8; } static inline void __put_unaligned_le32(uint32_t val, uint8_t *p) { __put_unaligned_le16(val >> 16, p + 2); __put_unaligned_le16(val, p); } static inline void __put_unaligned_le64(uint64_t val, uint8_t *p) { __put_unaligned_le32(val >> 32, p + 4); __put_unaligned_le32(val, p); } static inline uint16_t sg_get_unaligned_le16(const void *p) { return __get_unaligned_le16((const uint8_t *)p); } static inline uint32_t sg_get_unaligned_le24(const void *p) { return (uint32_t)__get_unaligned_le16((const uint8_t *)p) | ((const uint8_t *)p)[2] << 16; } static inline uint32_t sg_get_unaligned_le32(const void *p) { return __get_unaligned_le32((const uint8_t *)p); } /* Assume 48 bit value placed in uint64_t */ static inline uint64_t sg_get_unaligned_le48(const void *p) { return (uint64_t)__get_unaligned_le16((const uint8_t *)p + 4) << 32 | __get_unaligned_le32((const uint8_t *)p); } static inline uint64_t sg_get_unaligned_le64(const void *p) { return __get_unaligned_le64((const uint8_t *)p); } /* Returns 0 if 'num_bytes' is less than or equal to 0 or greater than * 8 (i.e. sizeof(uint64_t)). Else returns result in uint64_t which is * an 8 byte unsigned integer. */ static inline uint64_t sg_get_unaligned_le(int num_bytes, const void *p) { if ((num_bytes <= 0) || (num_bytes > (int)sizeof(uint64_t))) return 0; else { const uint8_t * xp = (const uint8_t *)p + (num_bytes - 1); uint64_t res = *xp; for (--xp; num_bytes > 1; --xp, --num_bytes) res = (res << 8) | *xp; return res; } } static inline void sg_put_unaligned_le16(uint16_t val, void *p) { __put_unaligned_le16(val, (uint8_t *)p); } static inline void sg_put_unaligned_le24(uint32_t val, void *p) { ((uint8_t *)p)[2] = (val >> 16) & 0xff; ((uint8_t *)p)[1] = (val >> 8) & 0xff; ((uint8_t *)p)[0] = val & 0xff; } static inline void sg_put_unaligned_le32(uint32_t val, void *p) { __put_unaligned_le32(val, (uint8_t *)p); } /* Assume 48 bit value placed in uint64_t */ static inline void sg_put_unaligned_le48(uint64_t val, void *p) { ((uint8_t *)p)[5] = (val >> 40) & 0xff; ((uint8_t *)p)[4] = (val >> 32) & 0xff; ((uint8_t *)p)[3] = (val >> 24) & 0xff; ((uint8_t *)p)[2] = (val >> 16) & 0xff; ((uint8_t *)p)[1] = (val >> 8) & 0xff; ((uint8_t *)p)[0] = val & 0xff; } static inline void sg_put_unaligned_le64(uint64_t val, void *p) { __put_unaligned_le64(val, (uint8_t *)p); } /* Since cdb and parameter blocks are often memset to zero before these * unaligned function partially fill them, then check for a val of zero * and ignore if it is with these variants. */ static inline void sg_nz_put_unaligned_le16(uint16_t val, void *p) { if (val) __put_unaligned_le16(val, (uint8_t *)p); } static inline void sg_nz_put_unaligned_le24(uint32_t val, void *p) { if (val) { ((uint8_t *)p)[2] = (val >> 16) & 0xff; ((uint8_t *)p)[1] = (val >> 8) & 0xff; ((uint8_t *)p)[0] = val & 0xff; } } static inline void sg_nz_put_unaligned_le32(uint32_t val, void *p) { if (val) __put_unaligned_le32(val, (uint8_t *)p); } static inline void sg_nz_put_unaligned_le64(uint64_t val, void *p) { if (val) __put_unaligned_le64(val, (uint8_t *)p); } #ifdef __cplusplus } #endif #endif /* SG_UNALIGNED_H */