/******************************************************************************* * Copyright 2013-2018 Intel Corporation * All Rights Reserved. * * If this software was obtained under the Intel Simplified Software License, * the following terms apply: * * The source code, information and material ("Material") contained herein is * owned by Intel Corporation or its suppliers or licensors, and title to such * Material remains with Intel Corporation or its suppliers or licensors. The * Material contains proprietary information of Intel or its suppliers and * licensors. The Material is protected by worldwide copyright laws and treaty * provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission. No license under * any patent, copyright or other intellectual property rights in the Material * is granted to or conferred upon you, either expressly, by implication, * inducement, estoppel or otherwise. Any license under such intellectual * property rights must be express and approved by Intel in writing. * * Unless otherwise agreed by Intel in writing, you may not remove or alter this * notice or any other notice embedded in Materials by Intel or Intel's * suppliers or licensors in any way. * * * If this software was obtained under the Apache License, Version 2.0 (the * "License"), the following terms apply: * * You may not use this file except in compliance with the License. You may * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /* // // Purpose: // Cryptography Primitive. // RSA Functions // // */ #include "owndefs.h" #include "owncp.h" #include "pcpbn.h" #include "pcpprimeg.h" #include "pcpprng.h" #include "pcpngrsa.h" static int cpMillerRabinTest(BNU_CHUNK_T* pW, cpSize nsW, const BNU_CHUNK_T* pE, cpSize bitsizeE, int k, const BNU_CHUNK_T* pPrime1, gsModEngine* pMont, BNU_CHUNK_T* pBuffer) { cpSize nsP = MOD_LEN(pMont); /* to Montgomery Domain */ ZEXPAND_BNU(pW, nsW, nsP); MOD_METHOD(pMont)->encode(pW, pW, pMont); /* w = exp(w,e) */ gsMontExpWin_BNU_sscm(pW, pW, nsP, pE, bitsizeE, pMont, pBuffer); /* if (w==1) ||(w==prime-1) => probably prime */ if ((0 == cpCmp_BNU(pW, nsP, MOD_MNT_R(pMont), nsP)) || (0 == cpCmp_BNU(pW, nsP, pPrime1, nsP))) return 1; /* witness of the primality */ while (--k) { MOD_METHOD(pMont)->sqr(pW, pW, pMont); if (0 == cpCmp_BNU(pW, nsP, MOD_MNT_R(pMont), nsP)) return 0; /* witness of the compositeness */ if (0 == cpCmp_BNU(pW, nsP, pPrime1, nsP)) return 1; /* witness of the primality */ } return 0; } /* test if P is prime returns: IPP_IS_PRIME (==1) - prime value has been detected IPP_IS_COMPOSITE (==0) - composite value has been detected -1 - if internal error (ippStsNoErr != rndFunc()) */ static int cpIsProbablyPrime(BNU_CHUNK_T* pPrime, int bitSize, int nTrials, IppBitSupplier rndFunc, void* pRndParam, gsModEngine* pME, BNU_CHUNK_T* pBuffer) { /* if test for trivial divisors passed*/ int ret = cpMimimalPrimeTest((Ipp32u*)pPrime, BITS2WORD32_SIZE(bitSize)); /* appy Miller-Rabin test */ if (ret) { int ns = BITS_BNU_CHUNK(bitSize); BNU_CHUNK_T* pPrime1 = pBuffer; BNU_CHUNK_T* pOdd = pPrime1 + ns; BNU_CHUNK_T* pWitness = pOdd + ns; BNU_CHUNK_T* pMontPrime1 = pWitness + ns; BNU_CHUNK_T* pScratchBuffer = pMontPrime1 + ns; int k, a, lenOdd; /* prime1 = prime-1 = odd*2^a */ cpDec_BNU(pPrime1, pPrime, ns, 1); for (k = 0, a = 0; k<ns; k++) { cpSize da = cpNTZ_BNU(pPrime1[k]); a += da; if (BNU_CHUNK_BITS != da) break; } lenOdd = cpLSR_BNU(pOdd, pPrime1, ns, a); FIX_BNU(pOdd, lenOdd); /* prime1 to (Montgomery Domain) */ cpSub_BNU(pMontPrime1, pPrime, MOD_MNT_R(pME), ns); for (k = 0, ret = 0; k<nTrials && !ret; k++) { BNU_CHUNK_T one = 1; ret = cpPRNGenRange(pWitness, &one, 1, pPrime1, ns, rndFunc, pRndParam); if (ret <= 0) break; /* internal error */ /* test primality */ ret = cpMillerRabinTest(pWitness, ns, //pOdd, lenOdd, a, pOdd, bitSize - a, a, pMontPrime1, pME, pScratchBuffer); } } return ret; }