/******************************************************************************* * Copyright 2018 Intel Corporation * All Rights Reserved. * * If this software was obtained under the Intel Simplified Software License, * the following terms apply: * * The source code, information and material ("Material") contained herein is * owned by Intel Corporation or its suppliers or licensors, and title to such * Material remains with Intel Corporation or its suppliers or licensors. The * Material contains proprietary information of Intel or its suppliers and * licensors. The Material is protected by worldwide copyright laws and treaty * provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission. No license under * any patent, copyright or other intellectual property rights in the Material * is granted to or conferred upon you, either expressly, by implication, * inducement, estoppel or otherwise. Any license under such intellectual * property rights must be express and approved by Intel in writing. * * Unless otherwise agreed by Intel in writing, you may not remove or alter this * notice or any other notice embedded in Materials by Intel or Intel's * suppliers or licensors in any way. * * * If this software was obtained under the Apache License, Version 2.0 (the * "License"), the following terms apply: * * You may not use this file except in compliance with the License. You may * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /* // Intel(R) Integrated Performance Primitives. Cryptography Primitives. // GF(p^d) methods, if binomial generator over GF((p^2)^3) // */ #include "owncp.h" #include "pcpgfpxstuff.h" #include "pcpgfpxmethod_com.h" #include "pcpgfpxmethod_binom_epid2.h" //tbcd: temporary excluded: #include <assert.h> /* // Intel(R) Enhanced Privacy ID (Intel(R) EPID) 2.0 specific. // // Intel(R) EPID 2.0 uses the following finite field hierarchy: // // 1) prime field GF(p), // p = 0xFFFFFFFFFFFCF0CD46E5F25EEE71A49F0CDC65FB12980A82D3292DDBAED33013 // // 2) 2-degree extension of GF(p): GF(p^2) == GF(p)[x]/g(x), g(x) = x^2 -beta, // beta =-1 mod p, so "beta" represents as {1} // // 3) 3-degree extension of GF(p^2) ~ GF(p^6): GF((p^2)^3) == GF(p)[v]/g(v), g(v) = v^3 -xi, // xi belongs GF(p^2), xi=x+2, so "xi" represents as {2,1} ---- "2" is low- and "1" is high-order coefficients // // 4) 2-degree extension of GF((p^2)^3) ~ GF(p^12): GF(((p^2)^3)^2) == GF(p)[w]/g(w), g(w) = w^2 -vi, // psi belongs GF((p^2)^3), vi=0*v^2 +1*v +0, so "vi" represents as {0,1,0}---- "0", '1" and "0" are low-, middle- and high-order coefficients // // See representations in t_gfpparam.cpp // */ /* // Intel(R) EPID 2.0 specific // ~~~~~~~~~~~~~~~ // // Multiplication over GF((p^2)^3) // - field polynomial: g(v) = v^3 - xi => binominal with specific value of "xi" // - xi = x+2 */ static BNU_CHUNK_T* cpGFpxMul_p3_binom_epid2(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFEx) { gsEngine* pGroundGFE = GFP_PARENT(pGFEx); int groundElemLen = GFP_FELEN(pGroundGFE); mod_mul mulF = GFP_METHOD(pGroundGFE)->mul; mod_add addF = GFP_METHOD(pGroundGFE)->add; mod_sub subF = GFP_METHOD(pGroundGFE)->sub; const BNU_CHUNK_T* pA0 = pA; const BNU_CHUNK_T* pA1 = pA+groundElemLen; const BNU_CHUNK_T* pA2 = pA+groundElemLen*2; const BNU_CHUNK_T* pB0 = pB; const BNU_CHUNK_T* pB1 = pB+groundElemLen; const BNU_CHUNK_T* pB2 = pB+groundElemLen*2; BNU_CHUNK_T* pR0 = pR; BNU_CHUNK_T* pR1 = pR+groundElemLen; BNU_CHUNK_T* pR2 = pR+groundElemLen*2; BNU_CHUNK_T* t0 = cpGFpGetPool(6, pGroundGFE); BNU_CHUNK_T* t1 = t0+groundElemLen; BNU_CHUNK_T* t2 = t1+groundElemLen; BNU_CHUNK_T* u0 = t2+groundElemLen; BNU_CHUNK_T* u1 = u0+groundElemLen; BNU_CHUNK_T* u2 = u1+groundElemLen; //tbcd: temporary excluded: assert(NULL!=t0); addF(u0 ,pA0, pA1, pGroundGFE); /* u0 = a[0]+a[1] */ addF(t0 ,pB0, pB1, pGroundGFE); /* t0 = b[0]+b[1] */ mulF(u0, u0, t0, pGroundGFE); /* u0 = (a[0]+a[1])*(b[0]+b[1]) */ mulF(t0, pA0, pB0, pGroundGFE); /* t0 = a[0]*b[0] */ addF(u1 ,pA1, pA2, pGroundGFE); /* u1 = a[1]+a[2] */ addF(t1 ,pB1, pB2, pGroundGFE); /* t1 = b[1]+b[2] */ mulF(u1, u1, t1, pGroundGFE); /* u1 = (a[1]+a[2])*(b[1]+b[2]) */ mulF(t1, pA1, pB1, pGroundGFE); /* t1 = a[1]*b[1] */ addF(u2 ,pA2, pA0, pGroundGFE); /* u2 = a[2]+a[0] */ addF(t2 ,pB2, pB0, pGroundGFE); /* t2 = b[2]+b[0] */ mulF(u2, u2, t2, pGroundGFE); /* u2 = (a[2]+a[0])*(b[2]+b[0]) */ mulF(t2, pA2, pB2, pGroundGFE); /* t2 = a[2]*b[2] */ subF(u0, u0, t0, pGroundGFE); /* u0 = a[0]*b[1]+a[1]*b[0] */ subF(u0, u0, t1, pGroundGFE); subF(u1, u1, t1, pGroundGFE); /* u1 = a[1]*b[2]+a[2]*b[1] */ subF(u1, u1, t2, pGroundGFE); subF(u2, u2, t2, pGroundGFE); /* u2 = a[2]*b[0]+a[0]*b[2] */ subF(u2, u2, t0, pGroundGFE); /* Intel(R) EPID 2.0 specific */ { int basicExtDegree = cpGFpBasicDegreeExtension(pGFEx); /* deal with GF(p^2^3) */ if(basicExtDegree==6) { cpFq2Mul_xi(u1, u1, pGroundGFE); cpFq2Mul_xi(t2, t2, pGroundGFE); addF(pR0, t0, u1, pGroundGFE); /* r[0] = a[0]*b[0] - (a[2]*b[1]+a[1]*b[2])*beta */ addF(pR1, u0, t2, pGroundGFE); /* r[1] = a[1]*b[0] + a[0]*b[1] - a[2]*b[2]*beta */ } /* just a case */ else { cpGFpxMul_G0(u1, u1, pGFEx); /* u1 = (a[1]*b[2]+a[2]*b[1]) * beta */ cpGFpxMul_G0(t2, t2, pGFEx); /* t2 = a[2]*b[2] * beta */ subF(pR0, t0, u1, pGroundGFE); /* r[0] = a[0]*b[0] - (a[2]*b[1]+a[1]*b[2])*beta */ subF(pR1, u0, t2, pGroundGFE); /* r[1] = a[1]*b[0] + a[0]*b[1] - a[2]*b[2]*beta */ } } addF(pR2, u2, t1, pGroundGFE); /* r[2] = a[2]*b[0] + a[1]*b[1] + a[0]*b[2] */ cpGFpReleasePool(6, pGroundGFE); return pR; } /* // Intel(R) EPID 2.0 specific // ~~~~~~~~~~~~~~~ // // Squaring over GF((p^2)^3) // - field polynomial: g(v) = v^3 - xi => binominal with specific value of "xi" // - xi = x+2 */ static BNU_CHUNK_T* cpGFpxSqr_p3_binom_epid2(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFEx) { gsEngine* pGroundGFE = GFP_PARENT(pGFEx); int groundElemLen = GFP_FELEN(pGroundGFE); mod_mul mulF = GFP_METHOD(pGroundGFE)->mul; mod_sqr sqrF = GFP_METHOD(pGroundGFE)->sqr; mod_add addF = GFP_METHOD(pGroundGFE)->add; mod_sub subF = GFP_METHOD(pGroundGFE)->sub; const BNU_CHUNK_T* pA0 = pA; const BNU_CHUNK_T* pA1 = pA+groundElemLen; const BNU_CHUNK_T* pA2 = pA+groundElemLen*2; BNU_CHUNK_T* pR0 = pR; BNU_CHUNK_T* pR1 = pR+groundElemLen; BNU_CHUNK_T* pR2 = pR+groundElemLen*2; BNU_CHUNK_T* s0 = cpGFpGetPool(5, pGroundGFE); BNU_CHUNK_T* s1 = s0+groundElemLen; BNU_CHUNK_T* s2 = s1+groundElemLen; BNU_CHUNK_T* s3 = s2+groundElemLen; BNU_CHUNK_T* s4 = s3+groundElemLen; addF(s2, pA0, pA2, pGroundGFE); subF(s2, s2, pA1, pGroundGFE); sqrF(s2, s2, pGroundGFE); sqrF(s0, pA0, pGroundGFE); sqrF(s4, pA2, pGroundGFE); mulF(s1, pA0, pA1, pGroundGFE); mulF(s3, pA1, pA2, pGroundGFE); addF(s1, s1, s1, pGroundGFE); addF(s3, s3, s3, pGroundGFE); addF(pR2, s1, s2, pGroundGFE); addF(pR2, pR2, s3, pGroundGFE); subF(pR2, pR2, s0, pGroundGFE); subF(pR2, pR2, s4, pGroundGFE); /* Intel(R) EPID 2.0 specific */ { int basicExtDegree = cpGFpBasicDegreeExtension(pGFEx); /* deal with GF(p^2^3) */ if(basicExtDegree==6) { cpFq2Mul_xi(s4, s4, pGroundGFE); cpFq2Mul_xi(s3, s3, pGroundGFE); addF(pR1, s1, s4, pGroundGFE); addF(pR0, s0, s3, pGroundGFE); } /* just a case */ else { cpGFpxMul_G0(s4, s4, pGFEx); cpGFpxMul_G0(s3, s3, pGFEx); subF(pR1, s1, s4, pGroundGFE); subF(pR0, s0, s3, pGroundGFE); } } cpGFpReleasePool(5, pGroundGFE); return pR; } /* // return specific polynomi alarith methods // polynomial - deg 3 binomial (Intel(R) EPID 2.0) */ static gsModMethod* gsPolyArith_binom3_epid2(void) { static gsModMethod m = { cpGFpxEncode_com, cpGFpxDecode_com, cpGFpxMul_p3_binom_epid2, cpGFpxSqr_p3_binom_epid2, NULL, cpGFpxAdd_com, cpGFpxSub_com, cpGFpxNeg_com, cpGFpxDiv2_com, cpGFpxMul2_com, cpGFpxMul3_com, //cpGFpxInv }; return &m; } /*F* // Name: ippsGFpxMethod_binom3_epid2 // // Purpose: Returns a reference to the implementation of arithmetic operations over GF(pd). // // Returns: pointer to a structure containing // an implementation of arithmetic operations over GF(pd) // g(v) = v^3 - U0, U0 from GF(q^2), U0 = u + 2 // // *F*/ IPPFUN( const IppsGFpMethod*, ippsGFpxMethod_binom3_epid2, (void) ) { static IppsGFpMethod method = { cpID_Binom3_epid20, 3, NULL, NULL }; method.arith = gsPolyArith_binom3_epid2(); return &method; }