/******************************************************************************* * Copyright 2016-2018 Intel Corporation * All Rights Reserved. * * If this software was obtained under the Intel Simplified Software License, * the following terms apply: * * The source code, information and material ("Material") contained herein is * owned by Intel Corporation or its suppliers or licensors, and title to such * Material remains with Intel Corporation or its suppliers or licensors. The * Material contains proprietary information of Intel or its suppliers and * licensors. The Material is protected by worldwide copyright laws and treaty * provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission. No license under * any patent, copyright or other intellectual property rights in the Material * is granted to or conferred upon you, either expressly, by implication, * inducement, estoppel or otherwise. Any license under such intellectual * property rights must be express and approved by Intel in writing. * * Unless otherwise agreed by Intel in writing, you may not remove or alter this * notice or any other notice embedded in Materials by Intel or Intel's * suppliers or licensors in any way. * * * If this software was obtained under the Apache License, Version 2.0 (the * "License"), the following terms apply: * * You may not use this file except in compliance with the License. You may * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /* // Intel(R) Integrated Performance Primitives. Cryptography Primitives. // GF(p^d) methods, if binomial generator // */ #include "owncp.h" #include "pcpgfpxstuff.h" #include "pcpgfpxmethod_com.h" //tbcd: temporary excluded: #include <assert.h> /* // Multiplication in GF(p^d), if field polynomial: g(x) = x^d + beta => binominal */ static BNU_CHUNK_T* cpGFpxMul_pd_binom(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFEx) { BNU_CHUNK_T* pGFpolynomial = GFP_MODULUS(pGFEx); int deg = GFP_EXTDEGREE(pGFEx); int elemLen= GFP_FELEN(pGFEx); int groundElemLen = GFP_FELEN(GFP_PARENT(pGFEx)); int d; BNU_CHUNK_T* R = cpGFpGetPool(4, pGFEx); BNU_CHUNK_T* X = R+elemLen; BNU_CHUNK_T* T0= X+elemLen; BNU_CHUNK_T* T1= T0+elemLen; //tbcd: temporary excluded: assert(NULL!=R); /* T0 = A * beta */ cpGFpxMul_GFE(T0, pA, pGFpolynomial, pGFEx); /* T1 = A */ cpGFpElementCopy(T1, pA, elemLen); /* R = A * B[0] */ cpGFpxMul_GFE(R, pA, pB, pGFEx); /* R += (A*B[d]) mod g() */ for(d=1; d<deg; d++) { cpGFpxMul_GFE(X, GFPX_IDX_ELEMENT(T0, deg-d, groundElemLen), GFPX_IDX_ELEMENT(pB, d, groundElemLen), pGFEx); GFP_METHOD(pGFEx)->add(R, R, X, pGFEx); } cpGFpElementCopy(pR, R, elemLen); cpGFpReleasePool(4, pGFEx); return pR; } /* // Squaring in GF(p^d), if field polynomial: g(x) = x^d + beta => binominal */ static BNU_CHUNK_T* cpGFpxSqr_pd_binom(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFEx) { #pragma noinline return cpGFpxMul_pd_binom(pR, pA, pA, pGFEx); } /* // return specific polynomial arith methods // polynomial - general binomial */ static gsModMethod* gsPolyArith_binom(void) { static gsModMethod m = { cpGFpxEncode_com, cpGFpxDecode_com, cpGFpxMul_pd_binom, cpGFpxSqr_pd_binom, NULL, cpGFpxAdd_com, cpGFpxSub_com, cpGFpxNeg_com, cpGFpxDiv2_com, cpGFpxMul2_com, cpGFpxMul3_com, //cpGFpxInv }; return &m; } /*F* // Name: ippsGFpxMethod_binom2 // // Purpose: Returns a reference to the implementation of arithmetic operations over GF(pd). // // Returns: pointer to a structure containing // an implementation of arithmetic operations over GF(pd) // g(x) = x^d - a0, a0 from GF(p) // // *F*/ IPPFUN( const IppsGFpMethod*, ippsGFpxMethod_binom, (void) ) { static IppsGFpMethod method = { cpID_Binom, 0, NULL, NULL }; method.arith = gsPolyArith_binom(); return &method; }