/*******************************************************************************
* Copyright 2010-2018 Intel Corporation
* All Rights Reserved.
*
* If this  software was obtained  under the  Intel Simplified  Software License,
* the following terms apply:
*
* The source code,  information  and material  ("Material") contained  herein is
* owned by Intel Corporation or its  suppliers or licensors,  and  title to such
* Material remains with Intel  Corporation or its  suppliers or  licensors.  The
* Material  contains  proprietary  information  of  Intel or  its suppliers  and
* licensors.  The Material is protected by  worldwide copyright  laws and treaty
* provisions.  No part  of  the  Material   may  be  used,  copied,  reproduced,
* modified, published,  uploaded, posted, transmitted,  distributed or disclosed
* in any way without Intel's prior express written permission.  No license under
* any patent,  copyright or other  intellectual property rights  in the Material
* is granted to  or  conferred  upon  you,  either   expressly,  by implication,
* inducement,  estoppel  or  otherwise.  Any  license   under such  intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing,  you may not remove or alter this
* notice or  any  other  notice   embedded  in  Materials  by  Intel  or Intel's
* suppliers or licensors in any way.
*
*
* If this  software  was obtained  under the  Apache License,  Version  2.0 (the
* "License"), the following terms apply:
*
* You may  not use this  file except  in compliance  with  the License.  You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless  required  by   applicable  law  or  agreed  to  in  writing,  software
* distributed under the License  is distributed  on an  "AS IS"  BASIS,  WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the   License  for the   specific  language   governing   permissions  and
* limitations under the License.
*******************************************************************************/

/*
//  Purpose:
//     Intel(R) Integrated Performance Primitives
//     Cryptographic Primitives
//     Internal GF(p) basic Definitions & Function Prototypes
//
*/

#if !defined(_PCP_GFP_H_)
#define _PCP_GFP_H_

#include "owncp.h"
#include "pcpgfpmethod.h"
#include "pcpmontgomery.h"

/* GF element */
typedef struct _cpGFpElement {
   IppCtxId    idCtx;   /* GF() element ident */
   int         length;  /* length of element (in BNU_CHUNK_T) */
   BNU_CHUNK_T*  pData;
} cpGFpElement;

#define GFPE_ID(pCtx)      ((pCtx)->idCtx)
#define GFPE_ROOM(pCtx)    ((pCtx)->length)
#define GFPE_DATA(pCtx)    ((pCtx)->pData)

#define GFPE_TEST_ID(pCtx) (GFPE_ID((pCtx))==idCtxGFPE)


/* GF(p) context */
typedef struct _cpGFp {
   IppCtxId       idCtx;   /* GFp spec ident     */
   gsModEngine*   pGFE;    /* arithmethic engine */
} cpGFp;

#define GFP_ALIGNMENT   ((int)(sizeof(void*)))

/* Local definitions */
#define GFP_MAX_BITSIZE       (IPP_MAX_GF_BITSIZE)      /* max bitsize for GF element */
#define GFP_POOL_SIZE         (16)//(IPP_MAX_EXPONENT_NUM+3)  /* num of elements into the pool */
#define GFP_RAND_ADD_BITS     (128)                     /* parameter of random element generation ?? == febits/2 */

#define GFP_ID(pCtx)          ((pCtx)->idCtx)
#define GFP_PMA(pCtx)         ((pCtx)->pGFE)

#define GFP_PARENT(pCtx)      MOD_PARENT((pCtx))
#define GFP_EXTDEGREE(pCtx)   MOD_EXTDEG((pCtx))
#define GFP_FEBITLEN(pCtx)    MOD_BITSIZE((pCtx))
#define GFP_FELEN(pCtx)       MOD_LEN((pCtx))
#define GFP_FELEN32(pCtx)     MOD_LEN32((pCtx))
#define GFP_PELEN(pCtx)       MOD_PELEN((pCtx))
#define GFP_METHOD(pCtx)      MOD_METHOD((pCtx))
#define GFP_MODULUS(pCtx)     MOD_MODULUS((pCtx))
#define GFP_MNT_FACTOR(pCtx)  MOD_MNT_FACTOR((pCtx))
#define GFP_MNT_R(pCtx)       MOD_MNT_R((pCtx))
#define GFP_MNT_RR(pCtx)      MOD_MNT_R2((pCtx))
#define GFP_HMODULUS(pCtx)    MOD_HMODULUS((pCtx))
#define GFP_QNR(pCtx)         MOD_QNR((pCtx))
#define GFP_POOL(pCtx)        MOD_POOL_BUF((pCtx))
#define GFP_MAXPOOL(pCtx)     MOD_MAXPOOL((pCtx))
#define GFP_USEDPOOL(pCtx)    MOD_USEDPOOL((pCtx))

#define GFP_IS_BASIC(pCtx)    (GFP_PARENT((pCtx))==NULL)
#define GFP_TEST_ID(pCtx)     (GFP_ID((pCtx))==idCtxGFP)

/*
// get/release n element from/to the pool
*/
#define cpGFpGetPool(n, gfe)     gsModPoolAlloc((gfe), (n))
#define cpGFpReleasePool(n, gfe) gsModPoolFree((gfe), (n))


__INLINE int cpGFpElementLen(const BNU_CHUNK_T* pE, int nsE)
{
   for(; nsE>1 && 0==pE[nsE-1]; nsE--) ;
   return nsE;
}
__INLINE BNU_CHUNK_T* cpGFpElementCopy(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pE, int nsE)
{
   int n;
   for(n=0; n<nsE; n++) pR[n] = pE[n];
   return pR;
}
__INLINE BNU_CHUNK_T* cpGFpElementPadd(BNU_CHUNK_T* pE, int nsE, BNU_CHUNK_T filler)
{
   int n;
   for(n=0; n<nsE; n++) pE[n] = filler;
   return pE;
}
__INLINE BNU_CHUNK_T* cpGFpElementCopyPadd(BNU_CHUNK_T* pR, int nsR, const BNU_CHUNK_T* pE, int nsE)
{
   int n;
   for(n=0; n<nsE; n++) pR[n] = pE[n];
   for(; n<nsR; n++) pR[n] = 0;
   return pR;
}
__INLINE int cpGFpElementCmp(const BNU_CHUNK_T* pE, const BNU_CHUNK_T* pX, int nsE)
{
   for(; nsE>1 && pE[nsE-1]==pX[nsE-1]; nsE--)
      ;
   return pE[nsE-1]==pX[nsE-1]? 0 : pE[nsE-1]>pX[nsE-1]? 1:-1;
}

__INLINE int cpGFpElementIsEquChunk(const BNU_CHUNK_T* pE, int nsE, BNU_CHUNK_T x)
{
   int isEqu = (pE[0] == x);
   return isEqu && (1==cpGFpElementLen(pE, nsE));
}

__INLINE BNU_CHUNK_T* cpGFpElementSetChunk(BNU_CHUNK_T* pR, int nsR, BNU_CHUNK_T x)
{
   return cpGFpElementCopyPadd(pR, nsR, &x, 1);
}

__INLINE BNU_CHUNK_T* cpGFpAdd(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsModEngine* pGFE)
{
   return GFP_METHOD(pGFE)->add(pR, pA, pB, pGFE);
}

__INLINE BNU_CHUNK_T* cpGFpSub(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsModEngine* pGFE)
{
   return GFP_METHOD(pGFE)->sub(pR, pA, pB, pGFE);
}

__INLINE BNU_CHUNK_T* cpGFpNeg(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsModEngine* pGFE)
{
   return GFP_METHOD(pGFE)->neg(pR, pA, pGFE);
}

__INLINE BNU_CHUNK_T* cpGFpMul(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsModEngine* pGFE)
{
   return GFP_METHOD(pGFE)->mul(pR, pA, pB, pGFE);
}

__INLINE BNU_CHUNK_T* cpGFpSqr(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsModEngine* pGFE)
{
   return GFP_METHOD(pGFE)->sqr(pR, pA, pGFE);
}

__INLINE BNU_CHUNK_T* cpGFpHalve(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsModEngine* pGFE)
{
   return GFP_METHOD(pGFE)->div2(pR, pA, pGFE);
}


#define GFP_LT(a,b,size)  (-1==cpGFpElementCmp((a),(b),(size)))
#define GFP_EQ(a,b,size)  ( 0==cpGFpElementCmp((a),(b),(size)))
#define GFP_GT(a,b,size)  ( 1==cpGFpElementCmp((a),(b),(size)))

#define GFP_IS_ZERO(a,size)  cpGFpElementIsEquChunk((a),(size), 0)
#define GFP_IS_ONE(a,size)   cpGFpElementIsEquChunk((a),(size), 1)

#define GFP_ZERO(a,size)      cpGFpElementSetChunk((a),(size), 0)
#define GFP_ONE(a,size)       cpGFpElementSetChunk((a),(size), 1)

#define GFP_IS_EVEN(a)  (0==((a)[0]&1))
#define GFP_IS_ODD(a)   (1==((a)[0]&1))


/* construct GF element */
__INLINE IppsGFpElement* cpGFpElementConstruct(IppsGFpElement* pR, BNU_CHUNK_T* pDataBufer, int ns)
{
   GFPE_ID(pR) = idCtxGFPE;
   GFPE_ROOM(pR) = ns;
   GFPE_DATA(pR) = pDataBufer;
   return pR;
}


/* size of GFp context, init and setup */
#define cpGFpGetSize OWNAPI(cpGFpGetSize)
int     cpGFpGetSize(int feBitSize, int peBitSize, int numpe);

#define   cpGFpInitGFp OWNAPI(cpGFpInitGFp)
IppStatus cpGFpInitGFp(int primeBitSize, IppsGFpState* pGF);

#define   cpGFpSetGFp OWNAPI(cpGFpSetGFp)
IppStatus cpGFpSetGFp(const BNU_CHUNK_T* pPrime, int primeBitSize, const IppsGFpMethod* method, IppsGFpState* pGF);

/* operations */
#define      cpGFpRand OWNAPI(cpGFpRand)
BNU_CHUNK_T* cpGFpRand(BNU_CHUNK_T* pR, gsModEngine* pGFE, IppBitSupplier rndFunc, void* pRndParam);

#define      cpGFpSet OWNAPI(cpGFpSet)
BNU_CHUNK_T* cpGFpSet (BNU_CHUNK_T* pR, const BNU_CHUNK_T* pDataA, int nsA, gsModEngine* pGFE);

#define      cpGFpGet OWNAPI(cpGFpGet)
BNU_CHUNK_T* cpGFpGet (BNU_CHUNK_T* pDataA, int nsA, const BNU_CHUNK_T* pR, gsModEngine* pGFE);

#define      cpGFpSetOctString OWNAPI(cpGFpSetOctString)
BNU_CHUNK_T* cpGFpSetOctString(BNU_CHUNK_T* pR, const Ipp8u* pStr, int strSize, gsModEngine* pGFE);

#define cpGFpGetOctString OWNAPI(cpGFpGetOctString)
Ipp8u*  cpGFpGetOctString(Ipp8u* pStr, int strSize, const BNU_CHUNK_T* pA, gsModEngine* pGFE);

#define      cpGFpInv OWNAPI(cpGFpInv)
BNU_CHUNK_T* cpGFpInv  (BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsModEngine* pGFE);

#define      cpGFpExp OWNAPI(cpGFpExp)
BNU_CHUNK_T* cpGFpExp  (BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pE, int nsE, gsModEngine* pGFE);

#define cpGFpSqrt OWNAPI(cpGFpSqrt)
int     cpGFpSqrt(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsModEngine* pGFE);

#define cpGFEqnr OWNAPI(cpGFEqnr)
void cpGFEqnr(gsModEngine* pGFE);

#endif /* _PCP_GFP_H_ */