/******************************************************************************* * Copyright 2016-2018 Intel Corporation * All Rights Reserved. * * If this software was obtained under the Intel Simplified Software License, * the following terms apply: * * The source code, information and material ("Material") contained herein is * owned by Intel Corporation or its suppliers or licensors, and title to such * Material remains with Intel Corporation or its suppliers or licensors. The * Material contains proprietary information of Intel or its suppliers and * licensors. The Material is protected by worldwide copyright laws and treaty * provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission. No license under * any patent, copyright or other intellectual property rights in the Material * is granted to or conferred upon you, either expressly, by implication, * inducement, estoppel or otherwise. Any license under such intellectual * property rights must be express and approved by Intel in writing. * * Unless otherwise agreed by Intel in writing, you may not remove or alter this * notice or any other notice embedded in Materials by Intel or Intel's * suppliers or licensors in any way. * * * If this software was obtained under the Apache License, Version 2.0 (the * "License"), the following terms apply: * * You may not use this file except in compliance with the License. You may * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /* // Intel(R) Integrated Performance Primitives. Cryptography Primitives. // GF(p) methods // */ #include "owndefs.h" #include "owncp.h" #include "pcpbnumisc.h" #include "gsmodstuff.h" #include "pcpgfpstuff.h" #include "pcpgfpmethod.h" #include "pcpecprime.h" //tbcd: temporary excluded: #include <assert.h> #if(_IPP >= _IPP_P8) || (_IPP32E >= _IPP32E_M7) /* arithmetic over P-192r1 NIST modulus */ #define p192r1_add OWNAPI(p192r1_add) BNU_CHUNK_T* p192r1_add(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE); #define p192r1_sub OWNAPI(p192r1_sub) BNU_CHUNK_T* p192r1_sub(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE); #define p192r1_neg OWNAPI(p192r1_neg) BNU_CHUNK_T* p192r1_neg(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE); #define p192r1_div_by_2 OWNAPI(p192r1_div_by_2) BNU_CHUNK_T* p192r1_div_by_2 (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE); #define p192r1_mul_by_2 OWNAPI(p192r1_mul_by_2) BNU_CHUNK_T* p192r1_mul_by_2 (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE); #define p192r1_mul_by_3 OWNAPI(p192r1_mul_by_3) BNU_CHUNK_T* p192r1_mul_by_3 (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE); #if(_IPP_ARCH ==_IPP_ARCH_EM64T) #define p192r1_mul_montl OWNAPI(p192r1_mul_montl) BNU_CHUNK_T* p192r1_mul_montl(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE); #define p192r1_mul_montx OWNAPI(p192r1_mul_montx) BNU_CHUNK_T* p192r1_mul_montx(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE); #define p192r1_sqr_montl OWNAPI(p192r1_sqr_montl) BNU_CHUNK_T* p192r1_sqr_montl(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE); #define p192r1_sqr_montx OWNAPI(p192r1_sqr_montx) BNU_CHUNK_T* p192r1_sqr_montx(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE); #define p192r1_to_mont OWNAPI(p192r1_to_mont) BNU_CHUNK_T* p192r1_to_mont (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE); #define p192r1_mont_back OWNAPI(p192r1_mont_back) BNU_CHUNK_T* p192r1_mont_back(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE); #endif #if(_IPP_ARCH ==_IPP_ARCH_IA32) #define p192r1_mul_mont_slm OWNAPI(p192r1_mul_mont_slm) BNU_CHUNK_T* p192r1_mul_mont_slm(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE); #define p192r1_sqr_mont_slm OWNAPI(p192r1_sqr_mont_slm) BNU_CHUNK_T* p192r1_sqr_mont_slm(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE); #define p192r1_mred OWNAPI(p192r1_mred) BNU_CHUNK_T* p192r1_mred(BNU_CHUNK_T* res, BNU_CHUNK_T* product); #endif #define OPERAND_BITSIZE (192) #define LEN_P192 (BITS_BNU_CHUNK(OPERAND_BITSIZE)) /* // ia32 multiplicative methods */ #if (_IPP_ARCH ==_IPP_ARCH_IA32) static BNU_CHUNK_T* p192r1_mul_montl(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFE) { BNU_CHUNK_T* product = cpGFpGetPool(2, pGFE); //tbcd: temporary excluded: assert(NULL!=product); cpMulAdc_BNU_school(product, pA,LEN_P192, pB,LEN_P192); p192r1_mred(pR, product); cpGFpReleasePool(2, pGFE); return pR; } static BNU_CHUNK_T* p192r1_sqr_montl(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE) { BNU_CHUNK_T* product = cpGFpGetPool(2, pGFE); //tbcd: temporary excluded: assert(NULL!=product); cpSqrAdc_BNU_school(product, pA,LEN_P192); p192r1_mred(pR, product); cpGFpReleasePool(2, pGFE); return pR; } /* // Montgomery domain conversion constants */ static BNU_CHUNK_T RR[] = { 0x00000001,0x00000000,0x00000002,0x00000000, 0x00000001,0x00000000}; static BNU_CHUNK_T one[] = { 1,0,0,0,0,0}; static BNU_CHUNK_T* p192r1_to_mont(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE) { return p192r1_mul_montl(pR, pA, (BNU_CHUNK_T*)RR, pGFE); } static BNU_CHUNK_T* p192r1_mont_back(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE) { return p192r1_mul_montl(pR, pA, (BNU_CHUNK_T*)one, pGFE); } static BNU_CHUNK_T* p192r1_to_mont_slm(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE) { return p192r1_mul_mont_slm(pR, pA, (BNU_CHUNK_T*)RR, pGFE); } static BNU_CHUNK_T* p192r1_mont_back_slm(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE) { return p192r1_mul_mont_slm(pR, pA, (BNU_CHUNK_T*)one, pGFE); } #endif /* _IPP >= _IPP_P8 */ /* // return specific gf p192r1 arith methods, // p192r1 = 2^192 -2^64 -1 (NIST P192r1) */ static gsModMethod* gsArithGF_p192r1(void) { static gsModMethod m = { p192r1_to_mont, p192r1_mont_back, p192r1_mul_montl, p192r1_sqr_montl, NULL, p192r1_add, p192r1_sub, p192r1_neg, p192r1_div_by_2, p192r1_mul_by_2, p192r1_mul_by_3, }; #if(_IPP_ARCH==_IPP_ARCH_EM64T) && ((_ADCOX_NI_ENABLING_==_FEATURE_ON_) || (_ADCOX_NI_ENABLING_==_FEATURE_TICKTOCK_)) if(IsFeatureEnabled(ippCPUID_ADCOX)) { m.mul = p192r1_mul_montx; m.sqr = p192r1_sqr_montx; } #endif #if(_IPP_ARCH==_IPP_ARCH_IA32) if(IsFeatureEnabled(ippCPUID_SSSE3|ippCPUID_MOVBE) && !IsFeatureEnabled(ippCPUID_AVX)) { m.mul = p192r1_mul_mont_slm; m.sqr = p192r1_sqr_mont_slm; m.encode = p192r1_to_mont_slm; m.decode = p192r1_mont_back_slm; } #endif return &m; } #endif /* (_IPP >= _IPP_P8) || (_IPP32E >= _IPP32E_M7) */ /*F* // Name: ippsGFpMethod_p192r1 // // Purpose: Returns a reference to an implementation of // arithmetic operations over GF(q). // // Returns: Pointer to a structure containing an implementation of arithmetic // operations over GF(q). q = 2^192 - 2^64 - 1 *F*/ IPPFUN( const IppsGFpMethod*, ippsGFpMethod_p192r1, (void) ) { static IppsGFpMethod method = { cpID_PrimeP192r1, 192, secp192r1_p, NULL }; #if(_IPP >= _IPP_P8) || (_IPP32E >= _IPP32E_M7) method.arith = gsArithGF_p192r1(); #else method.arith = gsArithGFp(); #endif return &method; } #undef LEN_P192 #undef OPERAND_BITSIZE