// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSE_QR_H #define EIGEN_SPARSE_QR_H namespace Eigen { template<typename MatrixType, typename OrderingType> class SparseQR; template<typename SparseQRType> struct SparseQRMatrixQReturnType; template<typename SparseQRType> struct SparseQRMatrixQTransposeReturnType; template<typename SparseQRType, typename Derived> struct SparseQR_QProduct; namespace internal { template <typename SparseQRType> struct traits<SparseQRMatrixQReturnType<SparseQRType> > { typedef typename SparseQRType::MatrixType ReturnType; typedef typename ReturnType::StorageIndex StorageIndex; typedef typename ReturnType::StorageKind StorageKind; enum { RowsAtCompileTime = Dynamic, ColsAtCompileTime = Dynamic }; }; template <typename SparseQRType> struct traits<SparseQRMatrixQTransposeReturnType<SparseQRType> > { typedef typename SparseQRType::MatrixType ReturnType; }; template <typename SparseQRType, typename Derived> struct traits<SparseQR_QProduct<SparseQRType, Derived> > { typedef typename Derived::PlainObject ReturnType; }; } // End namespace internal /** * \ingroup SparseQR_Module * \class SparseQR * \brief Sparse left-looking rank-revealing QR factorization * * This class implements a left-looking rank-revealing QR decomposition * of sparse matrices. When a column has a norm less than a given tolerance * it is implicitly permuted to the end. The QR factorization thus obtained is * given by A*P = Q*R where R is upper triangular or trapezoidal. * * P is the column permutation which is the product of the fill-reducing and the * rank-revealing permutations. Use colsPermutation() to get it. * * Q is the orthogonal matrix represented as products of Householder reflectors. * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. * You can then apply it to a vector. * * R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient. * matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank. * * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> * \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module * OrderingMethods \endlink module for the list of built-in and external ordering methods. * * \implsparsesolverconcept * * \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()). * */ template<typename _MatrixType, typename _OrderingType> class SparseQR : public SparseSolverBase<SparseQR<_MatrixType,_OrderingType> > { protected: typedef SparseSolverBase<SparseQR<_MatrixType,_OrderingType> > Base; using Base::m_isInitialized; public: using Base::_solve_impl; typedef _MatrixType MatrixType; typedef _OrderingType OrderingType; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::StorageIndex StorageIndex; typedef SparseMatrix<Scalar,ColMajor,StorageIndex> QRMatrixType; typedef Matrix<StorageIndex, Dynamic, 1> IndexVector; typedef Matrix<Scalar, Dynamic, 1> ScalarVector; typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; public: SparseQR () : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false) { } /** Construct a QR factorization of the matrix \a mat. * * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). * * \sa compute() */ explicit SparseQR(const MatrixType& mat) : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false) { compute(mat); } /** Computes the QR factorization of the sparse matrix \a mat. * * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). * * \sa analyzePattern(), factorize() */ void compute(const MatrixType& mat) { analyzePattern(mat); factorize(mat); } void analyzePattern(const MatrixType& mat); void factorize(const MatrixType& mat); /** \returns the number of rows of the represented matrix. */ inline Index rows() const { return m_pmat.rows(); } /** \returns the number of columns of the represented matrix. */ inline Index cols() const { return m_pmat.cols();} /** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization. * \warning The entries of the returned matrix are not sorted. This means that using it in algorithms * expecting sorted entries will fail. This include random coefficient accesses (SpaseMatrix::coeff()), * and coefficient-wise operations. Matrix products and triangular solves are fine though. * * To sort the entries, you can assign it to a row-major matrix, and if a column-major matrix * is required, you can copy it again: * \code * SparseMatrix<double> R = qr.matrixR(); // column-major, not sorted! * SparseMatrix<double,RowMajor> Rr = qr.matrixR(); // row-major, sorted * SparseMatrix<double> Rc = Rr; // column-major, sorted * \endcode */ const QRMatrixType& matrixR() const { return m_R; } /** \returns the number of non linearly dependent columns as determined by the pivoting threshold. * * \sa setPivotThreshold() */ Index rank() const { eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); return m_nonzeropivots; } /** \returns an expression of the matrix Q as products of sparse Householder reflectors. * The common usage of this function is to apply it to a dense matrix or vector * \code * VectorXd B1, B2; * // Initialize B1 * B2 = matrixQ() * B1; * \endcode * * To get a plain SparseMatrix representation of Q: * \code * SparseMatrix<double> Q; * Q = SparseQR<SparseMatrix<double> >(A).matrixQ(); * \endcode * Internally, this call simply performs a sparse product between the matrix Q * and a sparse identity matrix. However, due to the fact that the sparse * reflectors are stored unsorted, two transpositions are needed to sort * them before performing the product. */ SparseQRMatrixQReturnType<SparseQR> matrixQ() const { return SparseQRMatrixQReturnType<SparseQR>(*this); } /** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R * It is the combination of the fill-in reducing permutation and numerical column pivoting. */ const PermutationType& colsPermutation() const { eigen_assert(m_isInitialized && "Decomposition is not initialized."); return m_outputPerm_c; } /** \returns A string describing the type of error. * This method is provided to ease debugging, not to handle errors. */ std::string lastErrorMessage() const { return m_lastError; } /** \internal */ template<typename Rhs, typename Dest> bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const { eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix"); Index rank = this->rank(); // Compute Q^T * b; typename Dest::PlainObject y, b; y = this->matrixQ().transpose() * B; b = y; // Solve with the triangular matrix R y.resize((std::max<Index>)(cols(),y.rows()),y.cols()); y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(b.topRows(rank)); y.bottomRows(y.rows()-rank).setZero(); // Apply the column permutation if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols()); else dest = y.topRows(cols()); m_info = Success; return true; } /** Sets the threshold that is used to determine linearly dependent columns during the factorization. * * In practice, if during the factorization the norm of the column that has to be eliminated is below * this threshold, then the entire column is treated as zero, and it is moved at the end. */ void setPivotThreshold(const RealScalar& threshold) { m_useDefaultThreshold = false; m_threshold = threshold; } /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. * * \sa compute() */ template<typename Rhs> inline const Solve<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const { eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix"); return Solve<SparseQR, Rhs>(*this, B.derived()); } template<typename Rhs> inline const Solve<SparseQR, Rhs> solve(const SparseMatrixBase<Rhs>& B) const { eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix"); return Solve<SparseQR, Rhs>(*this, B.derived()); } /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was successful, * \c NumericalIssue if the QR factorization reports a numerical problem * \c InvalidInput if the input matrix is invalid * * \sa iparm() */ ComputationInfo info() const { eigen_assert(m_isInitialized && "Decomposition is not initialized."); return m_info; } /** \internal */ inline void _sort_matrix_Q() { if(this->m_isQSorted) return; // The matrix Q is sorted during the transposition SparseMatrix<Scalar, RowMajor, Index> mQrm(this->m_Q); this->m_Q = mQrm; this->m_isQSorted = true; } protected: bool m_analysisIsok; bool m_factorizationIsok; mutable ComputationInfo m_info; std::string m_lastError; QRMatrixType m_pmat; // Temporary matrix QRMatrixType m_R; // The triangular factor matrix QRMatrixType m_Q; // The orthogonal reflectors ScalarVector m_hcoeffs; // The Householder coefficients PermutationType m_perm_c; // Fill-reducing Column permutation PermutationType m_pivotperm; // The permutation for rank revealing PermutationType m_outputPerm_c; // The final column permutation RealScalar m_threshold; // Threshold to determine null Householder reflections bool m_useDefaultThreshold; // Use default threshold Index m_nonzeropivots; // Number of non zero pivots found IndexVector m_etree; // Column elimination tree IndexVector m_firstRowElt; // First element in each row bool m_isQSorted; // whether Q is sorted or not bool m_isEtreeOk; // whether the elimination tree match the initial input matrix template <typename, typename > friend struct SparseQR_QProduct; }; /** \brief Preprocessing step of a QR factorization * * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). * * In this step, the fill-reducing permutation is computed and applied to the columns of A * and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited. * * \note In this step it is assumed that there is no empty row in the matrix \a mat. */ template <typename MatrixType, typename OrderingType> void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat) { eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR"); // Copy to a column major matrix if the input is rowmajor typename internal::conditional<MatrixType::IsRowMajor,QRMatrixType,const MatrixType&>::type matCpy(mat); // Compute the column fill reducing ordering OrderingType ord; ord(matCpy, m_perm_c); Index n = mat.cols(); Index m = mat.rows(); Index diagSize = (std::min)(m,n); if (!m_perm_c.size()) { m_perm_c.resize(n); m_perm_c.indices().setLinSpaced(n, 0,StorageIndex(n-1)); } // Compute the column elimination tree of the permuted matrix m_outputPerm_c = m_perm_c.inverse(); internal::coletree(matCpy, m_etree, m_firstRowElt, m_outputPerm_c.indices().data()); m_isEtreeOk = true; m_R.resize(m, n); m_Q.resize(m, diagSize); // Allocate space for nonzero elements : rough estimation m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree m_Q.reserve(2*mat.nonZeros()); m_hcoeffs.resize(diagSize); m_analysisIsok = true; } /** \brief Performs the numerical QR factorization of the input matrix * * The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with * a matrix having the same sparsity pattern than \a mat. * * \param mat The sparse column-major matrix */ template <typename MatrixType, typename OrderingType> void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat) { using std::abs; eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step"); StorageIndex m = StorageIndex(mat.rows()); StorageIndex n = StorageIndex(mat.cols()); StorageIndex diagSize = (std::min)(m,n); IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q ScalarVector tval(m); // The dense vector used to compute the current column RealScalar pivotThreshold = m_threshold; m_R.setZero(); m_Q.setZero(); m_pmat = mat; if(!m_isEtreeOk) { m_outputPerm_c = m_perm_c.inverse(); internal::coletree(m_pmat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data()); m_isEtreeOk = true; } m_pmat.uncompress(); // To have the innerNonZeroPtr allocated // Apply the fill-in reducing permutation lazily: { // If the input is row major, copy the original column indices, // otherwise directly use the input matrix // IndexVector originalOuterIndicesCpy; const StorageIndex *originalOuterIndices = mat.outerIndexPtr(); if(MatrixType::IsRowMajor) { originalOuterIndicesCpy = IndexVector::Map(m_pmat.outerIndexPtr(),n+1); originalOuterIndices = originalOuterIndicesCpy.data(); } for (int i = 0; i < n; i++) { Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i; m_pmat.outerIndexPtr()[p] = originalOuterIndices[i]; m_pmat.innerNonZeroPtr()[p] = originalOuterIndices[i+1] - originalOuterIndices[i]; } } /* Compute the default threshold as in MatLab, see: * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 */ if(m_useDefaultThreshold) { RealScalar max2Norm = 0.0; for (int j = 0; j < n; j++) max2Norm = numext::maxi(max2Norm, m_pmat.col(j).norm()); if(max2Norm==RealScalar(0)) max2Norm = RealScalar(1); pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon(); } // Initialize the numerical permutation m_pivotperm.setIdentity(n); StorageIndex nonzeroCol = 0; // Record the number of valid pivots m_Q.startVec(0); // Left looking rank-revealing QR factorization: compute a column of R and Q at a time for (StorageIndex col = 0; col < n; ++col) { mark.setConstant(-1); m_R.startVec(col); mark(nonzeroCol) = col; Qidx(0) = nonzeroCol; nzcolR = 0; nzcolQ = 1; bool found_diag = nonzeroCol>=m; tval.setZero(); // Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e., // all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k. // Note: if the diagonal entry does not exist, then its contribution must be explicitly added, // thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found. for (typename QRMatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp) { StorageIndex curIdx = nonzeroCol; if(itp) curIdx = StorageIndex(itp.row()); if(curIdx == nonzeroCol) found_diag = true; // Get the nonzeros indexes of the current column of R StorageIndex st = m_firstRowElt(curIdx); // The traversal of the etree starts here if (st < 0 ) { m_lastError = "Empty row found during numerical factorization"; m_info = InvalidInput; return; } // Traverse the etree Index bi = nzcolR; for (; mark(st) != col; st = m_etree(st)) { Ridx(nzcolR) = st; // Add this row to the list, mark(st) = col; // and mark this row as visited nzcolR++; } // Reverse the list to get the topological ordering Index nt = nzcolR-bi; for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1)); // Copy the current (curIdx,pcol) value of the input matrix if(itp) tval(curIdx) = itp.value(); else tval(curIdx) = Scalar(0); // Compute the pattern of Q(:,k) if(curIdx > nonzeroCol && mark(curIdx) != col ) { Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q, mark(curIdx) = col; // and mark it as visited nzcolQ++; } } // Browse all the indexes of R(:,col) in reverse order for (Index i = nzcolR-1; i >= 0; i--) { Index curIdx = Ridx(i); // Apply the curIdx-th householder vector to the current column (temporarily stored into tval) Scalar tdot(0); // First compute q' * tval tdot = m_Q.col(curIdx).dot(tval); tdot *= m_hcoeffs(curIdx); // Then update tval = tval - q * tau // FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse") for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq) tval(itq.row()) -= itq.value() * tdot; // Detect fill-in for the current column of Q if(m_etree(Ridx(i)) == nonzeroCol) { for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq) { StorageIndex iQ = StorageIndex(itq.row()); if (mark(iQ) != col) { Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q, mark(iQ) = col; // and mark it as visited } } } } // End update current column Scalar tau = RealScalar(0); RealScalar beta = 0; if(nonzeroCol < diagSize) { // Compute the Householder reflection that eliminate the current column // FIXME this step should call the Householder module. Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0); // First, the squared norm of Q((col+1):m, col) RealScalar sqrNorm = 0.; for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq))); if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0)) { beta = numext::real(c0); tval(Qidx(0)) = 1; } else { using std::sqrt; beta = sqrt(numext::abs2(c0) + sqrNorm); if(numext::real(c0) >= RealScalar(0)) beta = -beta; tval(Qidx(0)) = 1; for (Index itq = 1; itq < nzcolQ; ++itq) tval(Qidx(itq)) /= (c0 - beta); tau = numext::conj((beta-c0) / beta); } } // Insert values in R for (Index i = nzcolR-1; i >= 0; i--) { Index curIdx = Ridx(i); if(curIdx < nonzeroCol) { m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx); tval(curIdx) = Scalar(0.); } } if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold) { m_R.insertBackByOuterInner(col, nonzeroCol) = beta; // The householder coefficient m_hcoeffs(nonzeroCol) = tau; // Record the householder reflections for (Index itq = 0; itq < nzcolQ; ++itq) { Index iQ = Qidx(itq); m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ); tval(iQ) = Scalar(0.); } nonzeroCol++; if(nonzeroCol<diagSize) m_Q.startVec(nonzeroCol); } else { // Zero pivot found: move implicitly this column to the end for (Index j = nonzeroCol; j < n-1; j++) std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]); // Recompute the column elimination tree internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data()); m_isEtreeOk = false; } } m_hcoeffs.tail(diagSize-nonzeroCol).setZero(); // Finalize the column pointers of the sparse matrices R and Q m_Q.finalize(); m_Q.makeCompressed(); m_R.finalize(); m_R.makeCompressed(); m_isQSorted = false; m_nonzeropivots = nonzeroCol; if(nonzeroCol<n) { // Permute the triangular factor to put the 'dead' columns to the end QRMatrixType tempR(m_R); m_R = tempR * m_pivotperm; // Update the column permutation m_outputPerm_c = m_outputPerm_c * m_pivotperm; } m_isInitialized = true; m_factorizationIsok = true; m_info = Success; } template <typename SparseQRType, typename Derived> struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived> > { typedef typename SparseQRType::QRMatrixType MatrixType; typedef typename SparseQRType::Scalar Scalar; // Get the references SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) : m_qr(qr),m_other(other),m_transpose(transpose) {} inline Index rows() const { return m_transpose ? m_qr.rows() : m_qr.cols(); } inline Index cols() const { return m_other.cols(); } // Assign to a vector template<typename DesType> void evalTo(DesType& res) const { Index m = m_qr.rows(); Index n = m_qr.cols(); Index diagSize = (std::min)(m,n); res = m_other; if (m_transpose) { eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes"); //Compute res = Q' * other column by column for(Index j = 0; j < res.cols(); j++){ for (Index k = 0; k < diagSize; k++) { Scalar tau = Scalar(0); tau = m_qr.m_Q.col(k).dot(res.col(j)); if(tau==Scalar(0)) continue; tau = tau * m_qr.m_hcoeffs(k); res.col(j) -= tau * m_qr.m_Q.col(k); } } } else { eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes"); // Compute res = Q * other column by column for(Index j = 0; j < res.cols(); j++) { for (Index k = diagSize-1; k >=0; k--) { Scalar tau = Scalar(0); tau = m_qr.m_Q.col(k).dot(res.col(j)); if(tau==Scalar(0)) continue; tau = tau * m_qr.m_hcoeffs(k); res.col(j) -= tau * m_qr.m_Q.col(k); } } } } const SparseQRType& m_qr; const Derived& m_other; bool m_transpose; }; template<typename SparseQRType> struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<SparseQRType> > { typedef typename SparseQRType::Scalar Scalar; typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; enum { RowsAtCompileTime = Dynamic, ColsAtCompileTime = Dynamic }; explicit SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {} template<typename Derived> SparseQR_QProduct<SparseQRType, Derived> operator*(const MatrixBase<Derived>& other) { return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(),false); } SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const { return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr); } inline Index rows() const { return m_qr.rows(); } inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); } // To use for operations with the transpose of Q SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const { return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr); } const SparseQRType& m_qr; }; template<typename SparseQRType> struct SparseQRMatrixQTransposeReturnType { explicit SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {} template<typename Derived> SparseQR_QProduct<SparseQRType,Derived> operator*(const MatrixBase<Derived>& other) { return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(), true); } const SparseQRType& m_qr; }; namespace internal { template<typename SparseQRType> struct evaluator_traits<SparseQRMatrixQReturnType<SparseQRType> > { typedef typename SparseQRType::MatrixType MatrixType; typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind; typedef SparseShape Shape; }; template< typename DstXprType, typename SparseQRType> struct Assignment<DstXprType, SparseQRMatrixQReturnType<SparseQRType>, internal::assign_op<typename DstXprType::Scalar,typename DstXprType::Scalar>, Sparse2Sparse> { typedef SparseQRMatrixQReturnType<SparseQRType> SrcXprType; typedef typename DstXprType::Scalar Scalar; typedef typename DstXprType::StorageIndex StorageIndex; static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &/*func*/) { typename DstXprType::PlainObject idMat(src.m_qr.rows(), src.m_qr.rows()); idMat.setIdentity(); // Sort the sparse householder reflectors if needed const_cast<SparseQRType *>(&src.m_qr)->_sort_matrix_Q(); dst = SparseQR_QProduct<SparseQRType, DstXprType>(src.m_qr, idMat, false); } }; template< typename DstXprType, typename SparseQRType> struct Assignment<DstXprType, SparseQRMatrixQReturnType<SparseQRType>, internal::assign_op<typename DstXprType::Scalar,typename DstXprType::Scalar>, Sparse2Dense> { typedef SparseQRMatrixQReturnType<SparseQRType> SrcXprType; typedef typename DstXprType::Scalar Scalar; typedef typename DstXprType::StorageIndex StorageIndex; static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &/*func*/) { dst = src.m_qr.matrixQ() * DstXprType::Identity(src.m_qr.rows(), src.m_qr.rows()); } }; } // end namespace internal } // end namespace Eigen #endif