// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSEMATRIXBASE_H #define EIGEN_SPARSEMATRIXBASE_H namespace Eigen { /** \ingroup SparseCore_Module * * \class SparseMatrixBase * * \brief Base class of any sparse matrices or sparse expressions * * \tparam Derived is the derived type, e.g. a sparse matrix type, or an expression, etc. * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIXBASE_PLUGIN. */ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived> { public: typedef typename internal::traits<Derived>::Scalar Scalar; /** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex<float>, etc. * * It is an alias for the Scalar type */ typedef Scalar value_type; typedef typename internal::packet_traits<Scalar>::type PacketScalar; typedef typename internal::traits<Derived>::StorageKind StorageKind; /** The integer type used to \b store indices within a SparseMatrix. * For a \c SparseMatrix<Scalar,Options,IndexType> it an alias of the third template parameter \c IndexType. */ typedef typename internal::traits<Derived>::StorageIndex StorageIndex; typedef typename internal::add_const_on_value_type_if_arithmetic< typename internal::packet_traits<Scalar>::type >::type PacketReturnType; typedef SparseMatrixBase StorageBaseType; typedef Matrix<StorageIndex,Dynamic,1> IndexVector; typedef Matrix<Scalar,Dynamic,1> ScalarVector; template<typename OtherDerived> Derived& operator=(const EigenBase<OtherDerived> &other); enum { RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, /**< The number of rows at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, /**< The number of columns at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime>::ret), /**< This is equal to the number of coefficients, i.e. the number of * rows times the number of columns, or to \a Dynamic if this is not * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ MaxRowsAtCompileTime = RowsAtCompileTime, MaxColsAtCompileTime = ColsAtCompileTime, MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime, MaxColsAtCompileTime>::ret), IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1, /**< This is set to true if either the number of rows or the number of * columns is known at compile-time to be equal to 1. Indeed, in that case, * we are dealing with a column-vector (if there is only one column) or with * a row-vector (if there is only one row). */ Flags = internal::traits<Derived>::Flags, /**< This stores expression \ref flags flags which may or may not be inherited by new expressions * constructed from this one. See the \ref flags "list of flags". */ IsRowMajor = Flags&RowMajorBit ? 1 : 0, InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime) : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime), #ifndef EIGEN_PARSED_BY_DOXYGEN _HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC #endif }; /** \internal the return type of MatrixBase::adjoint() */ typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived> >, Transpose<const Derived> >::type AdjointReturnType; typedef Transpose<Derived> TransposeReturnType; typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType; // FIXME storage order do not match evaluator storage order typedef SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor : ColMajor, StorageIndex> PlainObject; #ifndef EIGEN_PARSED_BY_DOXYGEN /** This is the "real scalar" type; if the \a Scalar type is already real numbers * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If * \a Scalar is \a std::complex<T> then RealScalar is \a T. * * \sa class NumTraits */ typedef typename NumTraits<Scalar>::Real RealScalar; /** \internal the return type of coeff() */ typedef typename internal::conditional<_HasDirectAccess, const Scalar&, Scalar>::type CoeffReturnType; /** \internal Represents a matrix with all coefficients equal to one another*/ typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Matrix<Scalar,Dynamic,Dynamic> > ConstantReturnType; /** type of the equivalent dense matrix */ typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> DenseMatrixType; /** type of the equivalent square matrix */ typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType; inline const Derived& derived() const { return *static_cast<const Derived*>(this); } inline Derived& derived() { return *static_cast<Derived*>(this); } inline Derived& const_cast_derived() const { return *static_cast<Derived*>(const_cast<SparseMatrixBase*>(this)); } typedef EigenBase<Derived> Base; #endif // not EIGEN_PARSED_BY_DOXYGEN #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase #ifdef EIGEN_PARSED_BY_DOXYGEN #define EIGEN_DOC_UNARY_ADDONS(METHOD,OP) /** <p>This method does not change the sparsity of \c *this: the OP is applied to explicitly stored coefficients only. \sa SparseCompressedBase::coeffs() </p> */ #define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL /** <p> \warning This method returns a read-only expression for any sparse matrices. \sa \ref TutorialSparse_SubMatrices "Sparse block operations" </p> */ #define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND) /** <p> \warning This method returns a read-write expression for COND sparse matrices only. Otherwise, the returned expression is read-only. \sa \ref TutorialSparse_SubMatrices "Sparse block operations" </p> */ #else #define EIGEN_DOC_UNARY_ADDONS(X,Y) #define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL #define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND) #endif # include "../plugins/CommonCwiseUnaryOps.h" # include "../plugins/CommonCwiseBinaryOps.h" # include "../plugins/MatrixCwiseUnaryOps.h" # include "../plugins/MatrixCwiseBinaryOps.h" # include "../plugins/BlockMethods.h" # ifdef EIGEN_SPARSEMATRIXBASE_PLUGIN # include EIGEN_SPARSEMATRIXBASE_PLUGIN # endif #undef EIGEN_CURRENT_STORAGE_BASE_CLASS #undef EIGEN_DOC_UNARY_ADDONS #undef EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL #undef EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF /** \returns the number of rows. \sa cols() */ inline Index rows() const { return derived().rows(); } /** \returns the number of columns. \sa rows() */ inline Index cols() const { return derived().cols(); } /** \returns the number of coefficients, which is \a rows()*cols(). * \sa rows(), cols(). */ inline Index size() const { return rows() * cols(); } /** \returns true if either the number of rows or the number of columns is equal to 1. * In other words, this function returns * \code rows()==1 || cols()==1 \endcode * \sa rows(), cols(), IsVectorAtCompileTime. */ inline bool isVector() const { return rows()==1 || cols()==1; } /** \returns the size of the storage major dimension, * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */ Index outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); } /** \returns the size of the inner dimension according to the storage order, * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */ Index innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); } bool isRValue() const { return m_isRValue; } Derived& markAsRValue() { m_isRValue = true; return derived(); } SparseMatrixBase() : m_isRValue(false) { /* TODO check flags */ } template<typename OtherDerived> Derived& operator=(const ReturnByValue<OtherDerived>& other); template<typename OtherDerived> inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other); inline Derived& operator=(const Derived& other); protected: template<typename OtherDerived> inline Derived& assign(const OtherDerived& other); template<typename OtherDerived> inline void assignGeneric(const OtherDerived& other); public: friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m) { typedef typename Derived::Nested Nested; typedef typename internal::remove_all<Nested>::type NestedCleaned; if (Flags&RowMajorBit) { Nested nm(m.derived()); internal::evaluator<NestedCleaned> thisEval(nm); for (Index row=0; row<nm.outerSize(); ++row) { Index col = 0; for (typename internal::evaluator<NestedCleaned>::InnerIterator it(thisEval, row); it; ++it) { for ( ; col<it.index(); ++col) s << "0 "; s << it.value() << " "; ++col; } for ( ; col<m.cols(); ++col) s << "0 "; s << std::endl; } } else { Nested nm(m.derived()); internal::evaluator<NestedCleaned> thisEval(nm); if (m.cols() == 1) { Index row = 0; for (typename internal::evaluator<NestedCleaned>::InnerIterator it(thisEval, 0); it; ++it) { for ( ; row<it.index(); ++row) s << "0" << std::endl; s << it.value() << std::endl; ++row; } for ( ; row<m.rows(); ++row) s << "0" << std::endl; } else { SparseMatrix<Scalar, RowMajorBit, StorageIndex> trans = m; s << static_cast<const SparseMatrixBase<SparseMatrix<Scalar, RowMajorBit, StorageIndex> >&>(trans); } } return s; } template<typename OtherDerived> Derived& operator+=(const SparseMatrixBase<OtherDerived>& other); template<typename OtherDerived> Derived& operator-=(const SparseMatrixBase<OtherDerived>& other); template<typename OtherDerived> Derived& operator+=(const DiagonalBase<OtherDerived>& other); template<typename OtherDerived> Derived& operator-=(const DiagonalBase<OtherDerived>& other); template<typename OtherDerived> Derived& operator+=(const EigenBase<OtherDerived> &other); template<typename OtherDerived> Derived& operator-=(const EigenBase<OtherDerived> &other); Derived& operator*=(const Scalar& other); Derived& operator/=(const Scalar& other); template<typename OtherDerived> struct CwiseProductDenseReturnType { typedef CwiseBinaryOp<internal::scalar_product_op<typename ScalarBinaryOpTraits< typename internal::traits<Derived>::Scalar, typename internal::traits<OtherDerived>::Scalar >::ReturnType>, const Derived, const OtherDerived > Type; }; template<typename OtherDerived> EIGEN_STRONG_INLINE const typename CwiseProductDenseReturnType<OtherDerived>::Type cwiseProduct(const MatrixBase<OtherDerived> &other) const; // sparse * diagonal template<typename OtherDerived> const Product<Derived,OtherDerived> operator*(const DiagonalBase<OtherDerived> &other) const { return Product<Derived,OtherDerived>(derived(), other.derived()); } // diagonal * sparse template<typename OtherDerived> friend const Product<OtherDerived,Derived> operator*(const DiagonalBase<OtherDerived> &lhs, const SparseMatrixBase& rhs) { return Product<OtherDerived,Derived>(lhs.derived(), rhs.derived()); } // sparse * sparse template<typename OtherDerived> const Product<Derived,OtherDerived,AliasFreeProduct> operator*(const SparseMatrixBase<OtherDerived> &other) const; // sparse * dense template<typename OtherDerived> const Product<Derived,OtherDerived> operator*(const MatrixBase<OtherDerived> &other) const { return Product<Derived,OtherDerived>(derived(), other.derived()); } // dense * sparse template<typename OtherDerived> friend const Product<OtherDerived,Derived> operator*(const MatrixBase<OtherDerived> &lhs, const SparseMatrixBase& rhs) { return Product<OtherDerived,Derived>(lhs.derived(), rhs.derived()); } /** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */ SparseSymmetricPermutationProduct<Derived,Upper|Lower> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const { return SparseSymmetricPermutationProduct<Derived,Upper|Lower>(derived(), perm); } template<typename OtherDerived> Derived& operator*=(const SparseMatrixBase<OtherDerived>& other); template<int Mode> inline const TriangularView<const Derived, Mode> triangularView() const; template<unsigned int UpLo> struct SelfAdjointViewReturnType { typedef SparseSelfAdjointView<Derived, UpLo> Type; }; template<unsigned int UpLo> struct ConstSelfAdjointViewReturnType { typedef const SparseSelfAdjointView<const Derived, UpLo> Type; }; template<unsigned int UpLo> inline typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const; template<unsigned int UpLo> inline typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView(); template<typename OtherDerived> Scalar dot(const MatrixBase<OtherDerived>& other) const; template<typename OtherDerived> Scalar dot(const SparseMatrixBase<OtherDerived>& other) const; RealScalar squaredNorm() const; RealScalar norm() const; RealScalar blueNorm() const; TransposeReturnType transpose() { return TransposeReturnType(derived()); } const ConstTransposeReturnType transpose() const { return ConstTransposeReturnType(derived()); } const AdjointReturnType adjoint() const { return AdjointReturnType(transpose()); } // inner-vector typedef Block<Derived,IsRowMajor?1:Dynamic,IsRowMajor?Dynamic:1,true> InnerVectorReturnType; typedef Block<const Derived,IsRowMajor?1:Dynamic,IsRowMajor?Dynamic:1,true> ConstInnerVectorReturnType; InnerVectorReturnType innerVector(Index outer); const ConstInnerVectorReturnType innerVector(Index outer) const; // set of inner-vectors typedef Block<Derived,Dynamic,Dynamic,true> InnerVectorsReturnType; typedef Block<const Derived,Dynamic,Dynamic,true> ConstInnerVectorsReturnType; InnerVectorsReturnType innerVectors(Index outerStart, Index outerSize); const ConstInnerVectorsReturnType innerVectors(Index outerStart, Index outerSize) const; DenseMatrixType toDense() const { return DenseMatrixType(derived()); } template<typename OtherDerived> bool isApprox(const SparseMatrixBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const; template<typename OtherDerived> bool isApprox(const MatrixBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const { return toDense().isApprox(other,prec); } /** \returns the matrix or vector obtained by evaluating this expression. * * Notice that in the case of a plain matrix or vector (not an expression) this function just returns * a const reference, in order to avoid a useless copy. */ inline const typename internal::eval<Derived>::type eval() const { return typename internal::eval<Derived>::type(derived()); } Scalar sum() const; inline const SparseView<Derived> pruned(const Scalar& reference = Scalar(0), const RealScalar& epsilon = NumTraits<Scalar>::dummy_precision()) const; protected: bool m_isRValue; static inline StorageIndex convert_index(const Index idx) { return internal::convert_index<StorageIndex>(idx); } private: template<typename Dest> void evalTo(Dest &) const; }; } // end namespace Eigen #endif // EIGEN_SPARSEMATRIXBASE_H