// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_COMPRESSED_STORAGE_H #define EIGEN_COMPRESSED_STORAGE_H namespace Eigen { namespace internal { /** \internal * Stores a sparse set of values as a list of values and a list of indices. * */ template<typename _Scalar,typename _StorageIndex> class CompressedStorage { public: typedef _Scalar Scalar; typedef _StorageIndex StorageIndex; protected: typedef typename NumTraits<Scalar>::Real RealScalar; public: CompressedStorage() : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) {} explicit CompressedStorage(Index size) : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) { resize(size); } CompressedStorage(const CompressedStorage& other) : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) { *this = other; } CompressedStorage& operator=(const CompressedStorage& other) { resize(other.size()); if(other.size()>0) { internal::smart_copy(other.m_values, other.m_values + m_size, m_values); internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices); } return *this; } void swap(CompressedStorage& other) { std::swap(m_values, other.m_values); std::swap(m_indices, other.m_indices); std::swap(m_size, other.m_size); std::swap(m_allocatedSize, other.m_allocatedSize); } ~CompressedStorage() { delete[] m_values; delete[] m_indices; } void reserve(Index size) { Index newAllocatedSize = m_size + size; if (newAllocatedSize > m_allocatedSize) reallocate(newAllocatedSize); } void squeeze() { if (m_allocatedSize>m_size) reallocate(m_size); } void resize(Index size, double reserveSizeFactor = 0) { if (m_allocatedSize<size) { Index realloc_size = (std::min<Index>)(NumTraits<StorageIndex>::highest(), size + Index(reserveSizeFactor*double(size))); if(realloc_size<size) internal::throw_std_bad_alloc(); reallocate(realloc_size); } m_size = size; } void append(const Scalar& v, Index i) { Index id = m_size; resize(m_size+1, 1); m_values[id] = v; m_indices[id] = internal::convert_index<StorageIndex>(i); } inline Index size() const { return m_size; } inline Index allocatedSize() const { return m_allocatedSize; } inline void clear() { m_size = 0; } const Scalar* valuePtr() const { return m_values; } Scalar* valuePtr() { return m_values; } const StorageIndex* indexPtr() const { return m_indices; } StorageIndex* indexPtr() { return m_indices; } inline Scalar& value(Index i) { eigen_internal_assert(m_values!=0); return m_values[i]; } inline const Scalar& value(Index i) const { eigen_internal_assert(m_values!=0); return m_values[i]; } inline StorageIndex& index(Index i) { eigen_internal_assert(m_indices!=0); return m_indices[i]; } inline const StorageIndex& index(Index i) const { eigen_internal_assert(m_indices!=0); return m_indices[i]; } /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */ inline Index searchLowerIndex(Index key) const { return searchLowerIndex(0, m_size, key); } /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */ inline Index searchLowerIndex(Index start, Index end, Index key) const { while(end>start) { Index mid = (end+start)>>1; if (m_indices[mid]<key) start = mid+1; else end = mid; } return start; } /** \returns the stored value at index \a key * If the value does not exist, then the value \a defaultValue is returned without any insertion. */ inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const { if (m_size==0) return defaultValue; else if (key==m_indices[m_size-1]) return m_values[m_size-1]; // ^^ optimization: let's first check if it is the last coefficient // (very common in high level algorithms) const Index id = searchLowerIndex(0,m_size-1,key); return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue; } /** Like at(), but the search is performed in the range [start,end) */ inline Scalar atInRange(Index start, Index end, Index key, const Scalar &defaultValue = Scalar(0)) const { if (start>=end) return defaultValue; else if (end>start && key==m_indices[end-1]) return m_values[end-1]; // ^^ optimization: let's first check if it is the last coefficient // (very common in high level algorithms) const Index id = searchLowerIndex(start,end-1,key); return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue; } /** \returns a reference to the value at index \a key * If the value does not exist, then the value \a defaultValue is inserted * such that the keys are sorted. */ inline Scalar& atWithInsertion(Index key, const Scalar& defaultValue = Scalar(0)) { Index id = searchLowerIndex(0,m_size,key); if (id>=m_size || m_indices[id]!=key) { if (m_allocatedSize<m_size+1) { m_allocatedSize = 2*(m_size+1); internal::scoped_array<Scalar> newValues(m_allocatedSize); internal::scoped_array<StorageIndex> newIndices(m_allocatedSize); // copy first chunk internal::smart_copy(m_values, m_values +id, newValues.ptr()); internal::smart_copy(m_indices, m_indices+id, newIndices.ptr()); // copy the rest if(m_size>id) { internal::smart_copy(m_values +id, m_values +m_size, newValues.ptr() +id+1); internal::smart_copy(m_indices+id, m_indices+m_size, newIndices.ptr()+id+1); } std::swap(m_values,newValues.ptr()); std::swap(m_indices,newIndices.ptr()); } else if(m_size>id) { internal::smart_memmove(m_values +id, m_values +m_size, m_values +id+1); internal::smart_memmove(m_indices+id, m_indices+m_size, m_indices+id+1); } m_size++; m_indices[id] = internal::convert_index<StorageIndex>(key); m_values[id] = defaultValue; } return m_values[id]; } void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) { Index k = 0; Index n = size(); for (Index i=0; i<n; ++i) { if (!internal::isMuchSmallerThan(value(i), reference, epsilon)) { value(k) = value(i); index(k) = index(i); ++k; } } resize(k,0); } protected: inline void reallocate(Index size) { #ifdef EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN #endif eigen_internal_assert(size!=m_allocatedSize); internal::scoped_array<Scalar> newValues(size); internal::scoped_array<StorageIndex> newIndices(size); Index copySize = (std::min)(size, m_size); if (copySize>0) { internal::smart_copy(m_values, m_values+copySize, newValues.ptr()); internal::smart_copy(m_indices, m_indices+copySize, newIndices.ptr()); } std::swap(m_values,newValues.ptr()); std::swap(m_indices,newIndices.ptr()); m_allocatedSize = size; } protected: Scalar* m_values; StorageIndex* m_indices; Index m_size; Index m_allocatedSize; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_COMPRESSED_STORAGE_H