// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_AMBIVECTOR_H #define EIGEN_AMBIVECTOR_H namespace Eigen { namespace internal { /** \internal * Hybrid sparse/dense vector class designed for intensive read-write operations. * * See BasicSparseLLT and SparseProduct for usage examples. */ template<typename _Scalar, typename _StorageIndex> class AmbiVector { public: typedef _Scalar Scalar; typedef _StorageIndex StorageIndex; typedef typename NumTraits<Scalar>::Real RealScalar; explicit AmbiVector(Index size) : m_buffer(0), m_zero(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1) { resize(size); } void init(double estimatedDensity); void init(int mode); Index nonZeros() const; /** Specifies a sub-vector to work on */ void setBounds(Index start, Index end) { m_start = convert_index(start); m_end = convert_index(end); } void setZero(); void restart(); Scalar& coeffRef(Index i); Scalar& coeff(Index i); class Iterator; ~AmbiVector() { delete[] m_buffer; } void resize(Index size) { if (m_allocatedSize < size) reallocate(size); m_size = convert_index(size); } StorageIndex size() const { return m_size; } protected: StorageIndex convert_index(Index idx) { return internal::convert_index<StorageIndex>(idx); } void reallocate(Index size) { // if the size of the matrix is not too large, let's allocate a bit more than needed such // that we can handle dense vector even in sparse mode. delete[] m_buffer; if (size<1000) { Index allocSize = (size * sizeof(ListEl) + sizeof(Scalar) - 1)/sizeof(Scalar); m_allocatedElements = convert_index((allocSize*sizeof(Scalar))/sizeof(ListEl)); m_buffer = new Scalar[allocSize]; } else { m_allocatedElements = convert_index((size*sizeof(Scalar))/sizeof(ListEl)); m_buffer = new Scalar[size]; } m_size = convert_index(size); m_start = 0; m_end = m_size; } void reallocateSparse() { Index copyElements = m_allocatedElements; m_allocatedElements = (std::min)(StorageIndex(m_allocatedElements*1.5),m_size); Index allocSize = m_allocatedElements * sizeof(ListEl); allocSize = (allocSize + sizeof(Scalar) - 1)/sizeof(Scalar); Scalar* newBuffer = new Scalar[allocSize]; memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl)); delete[] m_buffer; m_buffer = newBuffer; } protected: // element type of the linked list struct ListEl { StorageIndex next; StorageIndex index; Scalar value; }; // used to store data in both mode Scalar* m_buffer; Scalar m_zero; StorageIndex m_size; StorageIndex m_start; StorageIndex m_end; StorageIndex m_allocatedSize; StorageIndex m_allocatedElements; StorageIndex m_mode; // linked list mode StorageIndex m_llStart; StorageIndex m_llCurrent; StorageIndex m_llSize; }; /** \returns the number of non zeros in the current sub vector */ template<typename _Scalar,typename _StorageIndex> Index AmbiVector<_Scalar,_StorageIndex>::nonZeros() const { if (m_mode==IsSparse) return m_llSize; else return m_end - m_start; } template<typename _Scalar,typename _StorageIndex> void AmbiVector<_Scalar,_StorageIndex>::init(double estimatedDensity) { if (estimatedDensity>0.1) init(IsDense); else init(IsSparse); } template<typename _Scalar,typename _StorageIndex> void AmbiVector<_Scalar,_StorageIndex>::init(int mode) { m_mode = mode; if (m_mode==IsSparse) { m_llSize = 0; m_llStart = -1; } } /** Must be called whenever we might perform a write access * with an index smaller than the previous one. * * Don't worry, this function is extremely cheap. */ template<typename _Scalar,typename _StorageIndex> void AmbiVector<_Scalar,_StorageIndex>::restart() { m_llCurrent = m_llStart; } /** Set all coefficients of current subvector to zero */ template<typename _Scalar,typename _StorageIndex> void AmbiVector<_Scalar,_StorageIndex>::setZero() { if (m_mode==IsDense) { for (Index i=m_start; i<m_end; ++i) m_buffer[i] = Scalar(0); } else { eigen_assert(m_mode==IsSparse); m_llSize = 0; m_llStart = -1; } } template<typename _Scalar,typename _StorageIndex> _Scalar& AmbiVector<_Scalar,_StorageIndex>::coeffRef(Index i) { if (m_mode==IsDense) return m_buffer[i]; else { ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer); // TODO factorize the following code to reduce code generation eigen_assert(m_mode==IsSparse); if (m_llSize==0) { // this is the first element m_llStart = 0; m_llCurrent = 0; ++m_llSize; llElements[0].value = Scalar(0); llElements[0].index = convert_index(i); llElements[0].next = -1; return llElements[0].value; } else if (i<llElements[m_llStart].index) { // this is going to be the new first element of the list ListEl& el = llElements[m_llSize]; el.value = Scalar(0); el.index = convert_index(i); el.next = m_llStart; m_llStart = m_llSize; ++m_llSize; m_llCurrent = m_llStart; return el.value; } else { StorageIndex nextel = llElements[m_llCurrent].next; eigen_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index"); while (nextel >= 0 && llElements[nextel].index<=i) { m_llCurrent = nextel; nextel = llElements[nextel].next; } if (llElements[m_llCurrent].index==i) { // the coefficient already exists and we found it ! return llElements[m_llCurrent].value; } else { if (m_llSize>=m_allocatedElements) { reallocateSparse(); llElements = reinterpret_cast<ListEl*>(m_buffer); } eigen_internal_assert(m_llSize<m_allocatedElements && "internal error: overflow in sparse mode"); // let's insert a new coefficient ListEl& el = llElements[m_llSize]; el.value = Scalar(0); el.index = convert_index(i); el.next = llElements[m_llCurrent].next; llElements[m_llCurrent].next = m_llSize; ++m_llSize; return el.value; } } } } template<typename _Scalar,typename _StorageIndex> _Scalar& AmbiVector<_Scalar,_StorageIndex>::coeff(Index i) { if (m_mode==IsDense) return m_buffer[i]; else { ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer); eigen_assert(m_mode==IsSparse); if ((m_llSize==0) || (i<llElements[m_llStart].index)) { return m_zero; } else { Index elid = m_llStart; while (elid >= 0 && llElements[elid].index<i) elid = llElements[elid].next; if (llElements[elid].index==i) return llElements[m_llCurrent].value; else return m_zero; } } } /** Iterator over the nonzero coefficients */ template<typename _Scalar,typename _StorageIndex> class AmbiVector<_Scalar,_StorageIndex>::Iterator { public: typedef _Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; /** Default constructor * \param vec the vector on which we iterate * \param epsilon the minimal value used to prune zero coefficients. * In practice, all coefficients having a magnitude smaller than \a epsilon * are skipped. */ explicit Iterator(const AmbiVector& vec, const RealScalar& epsilon = 0) : m_vector(vec) { using std::abs; m_epsilon = epsilon; m_isDense = m_vector.m_mode==IsDense; if (m_isDense) { m_currentEl = 0; // this is to avoid a compilation warning m_cachedValue = 0; // this is to avoid a compilation warning m_cachedIndex = m_vector.m_start-1; ++(*this); } else { ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer); m_currentEl = m_vector.m_llStart; while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon) m_currentEl = llElements[m_currentEl].next; if (m_currentEl<0) { m_cachedValue = 0; // this is to avoid a compilation warning m_cachedIndex = -1; } else { m_cachedIndex = llElements[m_currentEl].index; m_cachedValue = llElements[m_currentEl].value; } } } StorageIndex index() const { return m_cachedIndex; } Scalar value() const { return m_cachedValue; } operator bool() const { return m_cachedIndex>=0; } Iterator& operator++() { using std::abs; if (m_isDense) { do { ++m_cachedIndex; } while (m_cachedIndex<m_vector.m_end && abs(m_vector.m_buffer[m_cachedIndex])<=m_epsilon); if (m_cachedIndex<m_vector.m_end) m_cachedValue = m_vector.m_buffer[m_cachedIndex]; else m_cachedIndex=-1; } else { ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer); do { m_currentEl = llElements[m_currentEl].next; } while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon); if (m_currentEl<0) { m_cachedIndex = -1; } else { m_cachedIndex = llElements[m_currentEl].index; m_cachedValue = llElements[m_currentEl].value; } } return *this; } protected: const AmbiVector& m_vector; // the target vector StorageIndex m_currentEl; // the current element in sparse/linked-list mode RealScalar m_epsilon; // epsilon used to prune zero coefficients StorageIndex m_cachedIndex; // current coordinate Scalar m_cachedValue; // current value bool m_isDense; // mode of the vector }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_AMBIVECTOR_H