// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SIMPLICIAL_CHOLESKY_H #define EIGEN_SIMPLICIAL_CHOLESKY_H namespace Eigen { enum SimplicialCholeskyMode { SimplicialCholeskyLLT, SimplicialCholeskyLDLT }; namespace internal { template<typename CholMatrixType, typename InputMatrixType> struct simplicial_cholesky_grab_input { typedef CholMatrixType const * ConstCholMatrixPtr; static void run(const InputMatrixType& input, ConstCholMatrixPtr &pmat, CholMatrixType &tmp) { tmp = input; pmat = &tmp; } }; template<typename MatrixType> struct simplicial_cholesky_grab_input<MatrixType,MatrixType> { typedef MatrixType const * ConstMatrixPtr; static void run(const MatrixType& input, ConstMatrixPtr &pmat, MatrixType &/*tmp*/) { pmat = &input; } }; } // end namespace internal /** \ingroup SparseCholesky_Module * \brief A base class for direct sparse Cholesky factorizations * * This is a base class for LL^T and LDL^T Cholesky factorizations of sparse matrices that are * selfadjoint and positive definite. These factorizations allow for solving A.X = B where * X and B can be either dense or sparse. * * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization * such that the factorized matrix is P A P^-1. * * \tparam Derived the type of the derived class, that is the actual factorization type. * */ template<typename Derived> class SimplicialCholeskyBase : public SparseSolverBase<Derived> { typedef SparseSolverBase<Derived> Base; using Base::m_isInitialized; public: typedef typename internal::traits<Derived>::MatrixType MatrixType; typedef typename internal::traits<Derived>::OrderingType OrderingType; enum { UpLo = internal::traits<Derived>::UpLo }; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::StorageIndex StorageIndex; typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType; typedef CholMatrixType const * ConstCholMatrixPtr; typedef Matrix<Scalar,Dynamic,1> VectorType; typedef Matrix<StorageIndex,Dynamic,1> VectorI; enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; public: using Base::derived; /** Default constructor */ SimplicialCholeskyBase() : m_info(Success), m_shiftOffset(0), m_shiftScale(1) {} explicit SimplicialCholeskyBase(const MatrixType& matrix) : m_info(Success), m_shiftOffset(0), m_shiftScale(1) { derived().compute(matrix); } ~SimplicialCholeskyBase() { } Derived& derived() { return *static_cast<Derived*>(this); } const Derived& derived() const { return *static_cast<const Derived*>(this); } inline Index cols() const { return m_matrix.cols(); } inline Index rows() const { return m_matrix.rows(); } /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was succesful, * \c NumericalIssue if the matrix.appears to be negative. */ ComputationInfo info() const { eigen_assert(m_isInitialized && "Decomposition is not initialized."); return m_info; } /** \returns the permutation P * \sa permutationPinv() */ const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& permutationP() const { return m_P; } /** \returns the inverse P^-1 of the permutation P * \sa permutationP() */ const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& permutationPinv() const { return m_Pinv; } /** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization. * * During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n * \c d_ii = \a offset + \a scale * \c d_ii * * The default is the identity transformation with \a offset=0, and \a scale=1. * * \returns a reference to \c *this. */ Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1) { m_shiftOffset = offset; m_shiftScale = scale; return derived(); } #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal */ template<typename Stream> void dumpMemory(Stream& s) { int total = 0; s << " L: " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n"; s << " diag: " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n"; s << " tree: " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n"; s << " nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n"; s << " perm: " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n"; s << " perm^-1: " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n"; s << " TOTAL: " << (total>> 20) << "Mb" << "\n"; } /** \internal */ template<typename Rhs,typename Dest> void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const { eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); eigen_assert(m_matrix.rows()==b.rows()); if(m_info!=Success) return; if(m_P.size()>0) dest = m_P * b; else dest = b; if(m_matrix.nonZeros()>0) // otherwise L==I derived().matrixL().solveInPlace(dest); if(m_diag.size()>0) dest = m_diag.asDiagonal().inverse() * dest; if (m_matrix.nonZeros()>0) // otherwise U==I derived().matrixU().solveInPlace(dest); if(m_P.size()>0) dest = m_Pinv * dest; } template<typename Rhs,typename Dest> void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const { internal::solve_sparse_through_dense_panels(derived(), b, dest); } #endif // EIGEN_PARSED_BY_DOXYGEN protected: /** Computes the sparse Cholesky decomposition of \a matrix */ template<bool DoLDLT> void compute(const MatrixType& matrix) { eigen_assert(matrix.rows()==matrix.cols()); Index size = matrix.cols(); CholMatrixType tmp(size,size); ConstCholMatrixPtr pmat; ordering(matrix, pmat, tmp); analyzePattern_preordered(*pmat, DoLDLT); factorize_preordered<DoLDLT>(*pmat); } template<bool DoLDLT> void factorize(const MatrixType& a) { eigen_assert(a.rows()==a.cols()); Index size = a.cols(); CholMatrixType tmp(size,size); ConstCholMatrixPtr pmat; if(m_P.size()==0 && (UpLo&Upper)==Upper) { // If there is no ordering, try to directly use the input matrix without any copy internal::simplicial_cholesky_grab_input<CholMatrixType,MatrixType>::run(a, pmat, tmp); } else { tmp.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P); pmat = &tmp; } factorize_preordered<DoLDLT>(*pmat); } template<bool DoLDLT> void factorize_preordered(const CholMatrixType& a); void analyzePattern(const MatrixType& a, bool doLDLT) { eigen_assert(a.rows()==a.cols()); Index size = a.cols(); CholMatrixType tmp(size,size); ConstCholMatrixPtr pmat; ordering(a, pmat, tmp); analyzePattern_preordered(*pmat,doLDLT); } void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT); void ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap); /** keeps off-diagonal entries; drops diagonal entries */ struct keep_diag { inline bool operator() (const Index& row, const Index& col, const Scalar&) const { return row!=col; } }; mutable ComputationInfo m_info; bool m_factorizationIsOk; bool m_analysisIsOk; CholMatrixType m_matrix; VectorType m_diag; // the diagonal coefficients (LDLT mode) VectorI m_parent; // elimination tree VectorI m_nonZerosPerCol; PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_P; // the permutation PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_Pinv; // the inverse permutation RealScalar m_shiftOffset; RealScalar m_shiftScale; }; template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialLLT; template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialLDLT; template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialCholesky; namespace internal { template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> > { typedef _MatrixType MatrixType; typedef _Ordering OrderingType; enum { UpLo = _UpLo }; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::StorageIndex StorageIndex; typedef SparseMatrix<Scalar, ColMajor, StorageIndex> CholMatrixType; typedef TriangularView<const CholMatrixType, Eigen::Lower> MatrixL; typedef TriangularView<const typename CholMatrixType::AdjointReturnType, Eigen::Upper> MatrixU; static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } }; template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> > { typedef _MatrixType MatrixType; typedef _Ordering OrderingType; enum { UpLo = _UpLo }; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::StorageIndex StorageIndex; typedef SparseMatrix<Scalar, ColMajor, StorageIndex> CholMatrixType; typedef TriangularView<const CholMatrixType, Eigen::UnitLower> MatrixL; typedef TriangularView<const typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU; static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } }; template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> > { typedef _MatrixType MatrixType; typedef _Ordering OrderingType; enum { UpLo = _UpLo }; }; } /** \ingroup SparseCholesky_Module * \class SimplicialLLT * \brief A direct sparse LLT Cholesky factorizations * * This class provides a LL^T Cholesky factorizations of sparse matrices that are * selfadjoint and positive definite. The factorization allows for solving A.X = B where * X and B can be either dense or sparse. * * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization * such that the factorized matrix is P A P^-1. * * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower * or Upper. Default is Lower. * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<> * * \implsparsesolverconcept * * \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering */ template<typename _MatrixType, int _UpLo, typename _Ordering> class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> > { public: typedef _MatrixType MatrixType; enum { UpLo = _UpLo }; typedef SimplicialCholeskyBase<SimplicialLLT> Base; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::StorageIndex StorageIndex; typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType; typedef Matrix<Scalar,Dynamic,1> VectorType; typedef internal::traits<SimplicialLLT> Traits; typedef typename Traits::MatrixL MatrixL; typedef typename Traits::MatrixU MatrixU; public: /** Default constructor */ SimplicialLLT() : Base() {} /** Constructs and performs the LLT factorization of \a matrix */ explicit SimplicialLLT(const MatrixType& matrix) : Base(matrix) {} /** \returns an expression of the factor L */ inline const MatrixL matrixL() const { eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); return Traits::getL(Base::m_matrix); } /** \returns an expression of the factor U (= L^*) */ inline const MatrixU matrixU() const { eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); return Traits::getU(Base::m_matrix); } /** Computes the sparse Cholesky decomposition of \a matrix */ SimplicialLLT& compute(const MatrixType& matrix) { Base::template compute<false>(matrix); return *this; } /** Performs a symbolic decomposition on the sparcity of \a matrix. * * This function is particularly useful when solving for several problems having the same structure. * * \sa factorize() */ void analyzePattern(const MatrixType& a) { Base::analyzePattern(a, false); } /** Performs a numeric decomposition of \a matrix * * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. * * \sa analyzePattern() */ void factorize(const MatrixType& a) { Base::template factorize<false>(a); } /** \returns the determinant of the underlying matrix from the current factorization */ Scalar determinant() const { Scalar detL = Base::m_matrix.diagonal().prod(); return numext::abs2(detL); } }; /** \ingroup SparseCholesky_Module * \class SimplicialLDLT * \brief A direct sparse LDLT Cholesky factorizations without square root. * * This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are * selfadjoint and positive definite. The factorization allows for solving A.X = B where * X and B can be either dense or sparse. * * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization * such that the factorized matrix is P A P^-1. * * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower * or Upper. Default is Lower. * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<> * * \implsparsesolverconcept * * \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering */ template<typename _MatrixType, int _UpLo, typename _Ordering> class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> > { public: typedef _MatrixType MatrixType; enum { UpLo = _UpLo }; typedef SimplicialCholeskyBase<SimplicialLDLT> Base; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::StorageIndex StorageIndex; typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType; typedef Matrix<Scalar,Dynamic,1> VectorType; typedef internal::traits<SimplicialLDLT> Traits; typedef typename Traits::MatrixL MatrixL; typedef typename Traits::MatrixU MatrixU; public: /** Default constructor */ SimplicialLDLT() : Base() {} /** Constructs and performs the LLT factorization of \a matrix */ explicit SimplicialLDLT(const MatrixType& matrix) : Base(matrix) {} /** \returns a vector expression of the diagonal D */ inline const VectorType vectorD() const { eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); return Base::m_diag; } /** \returns an expression of the factor L */ inline const MatrixL matrixL() const { eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); return Traits::getL(Base::m_matrix); } /** \returns an expression of the factor U (= L^*) */ inline const MatrixU matrixU() const { eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); return Traits::getU(Base::m_matrix); } /** Computes the sparse Cholesky decomposition of \a matrix */ SimplicialLDLT& compute(const MatrixType& matrix) { Base::template compute<true>(matrix); return *this; } /** Performs a symbolic decomposition on the sparcity of \a matrix. * * This function is particularly useful when solving for several problems having the same structure. * * \sa factorize() */ void analyzePattern(const MatrixType& a) { Base::analyzePattern(a, true); } /** Performs a numeric decomposition of \a matrix * * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. * * \sa analyzePattern() */ void factorize(const MatrixType& a) { Base::template factorize<true>(a); } /** \returns the determinant of the underlying matrix from the current factorization */ Scalar determinant() const { return Base::m_diag.prod(); } }; /** \deprecated use SimplicialLDLT or class SimplicialLLT * \ingroup SparseCholesky_Module * \class SimplicialCholesky * * \sa class SimplicialLDLT, class SimplicialLLT */ template<typename _MatrixType, int _UpLo, typename _Ordering> class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> > { public: typedef _MatrixType MatrixType; enum { UpLo = _UpLo }; typedef SimplicialCholeskyBase<SimplicialCholesky> Base; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::StorageIndex StorageIndex; typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType; typedef Matrix<Scalar,Dynamic,1> VectorType; typedef internal::traits<SimplicialCholesky> Traits; typedef internal::traits<SimplicialLDLT<MatrixType,UpLo> > LDLTTraits; typedef internal::traits<SimplicialLLT<MatrixType,UpLo> > LLTTraits; public: SimplicialCholesky() : Base(), m_LDLT(true) {} explicit SimplicialCholesky(const MatrixType& matrix) : Base(), m_LDLT(true) { compute(matrix); } SimplicialCholesky& setMode(SimplicialCholeskyMode mode) { switch(mode) { case SimplicialCholeskyLLT: m_LDLT = false; break; case SimplicialCholeskyLDLT: m_LDLT = true; break; default: break; } return *this; } inline const VectorType vectorD() const { eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); return Base::m_diag; } inline const CholMatrixType rawMatrix() const { eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); return Base::m_matrix; } /** Computes the sparse Cholesky decomposition of \a matrix */ SimplicialCholesky& compute(const MatrixType& matrix) { if(m_LDLT) Base::template compute<true>(matrix); else Base::template compute<false>(matrix); return *this; } /** Performs a symbolic decomposition on the sparcity of \a matrix. * * This function is particularly useful when solving for several problems having the same structure. * * \sa factorize() */ void analyzePattern(const MatrixType& a) { Base::analyzePattern(a, m_LDLT); } /** Performs a numeric decomposition of \a matrix * * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. * * \sa analyzePattern() */ void factorize(const MatrixType& a) { if(m_LDLT) Base::template factorize<true>(a); else Base::template factorize<false>(a); } /** \internal */ template<typename Rhs,typename Dest> void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const { eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); eigen_assert(Base::m_matrix.rows()==b.rows()); if(Base::m_info!=Success) return; if(Base::m_P.size()>0) dest = Base::m_P * b; else dest = b; if(Base::m_matrix.nonZeros()>0) // otherwise L==I { if(m_LDLT) LDLTTraits::getL(Base::m_matrix).solveInPlace(dest); else LLTTraits::getL(Base::m_matrix).solveInPlace(dest); } if(Base::m_diag.size()>0) dest = Base::m_diag.asDiagonal().inverse() * dest; if (Base::m_matrix.nonZeros()>0) // otherwise I==I { if(m_LDLT) LDLTTraits::getU(Base::m_matrix).solveInPlace(dest); else LLTTraits::getU(Base::m_matrix).solveInPlace(dest); } if(Base::m_P.size()>0) dest = Base::m_Pinv * dest; } /** \internal */ template<typename Rhs,typename Dest> void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const { internal::solve_sparse_through_dense_panels(*this, b, dest); } Scalar determinant() const { if(m_LDLT) { return Base::m_diag.prod(); } else { Scalar detL = Diagonal<const CholMatrixType>(Base::m_matrix).prod(); return numext::abs2(detL); } } protected: bool m_LDLT; }; template<typename Derived> void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap) { eigen_assert(a.rows()==a.cols()); const Index size = a.rows(); pmat = ≈ // Note that ordering methods compute the inverse permutation if(!internal::is_same<OrderingType,NaturalOrdering<Index> >::value) { { CholMatrixType C; C = a.template selfadjointView<UpLo>(); OrderingType ordering; ordering(C,m_Pinv); } if(m_Pinv.size()>0) m_P = m_Pinv.inverse(); else m_P.resize(0); ap.resize(size,size); ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P); } else { m_Pinv.resize(0); m_P.resize(0); if(int(UpLo)==int(Lower) || MatrixType::IsRowMajor) { // we have to transpose the lower part to to the upper one ap.resize(size,size); ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>(); } else internal::simplicial_cholesky_grab_input<CholMatrixType,MatrixType>::run(a, pmat, ap); } } } // end namespace Eigen #endif // EIGEN_SIMPLICIAL_CHOLESKY_H