// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H #define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H namespace Eigen { namespace internal { /** \internal Low-level conjugate gradient algorithm for least-square problems * \param mat The matrix A * \param rhs The right hand side vector b * \param x On input and initial solution, on output the computed solution. * \param precond A preconditioner being able to efficiently solve for an * approximation of A'Ax=b (regardless of b) * \param iters On input the max number of iteration, on output the number of performed iterations. * \param tol_error On input the tolerance error, on output an estimation of the relative error. */ template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> EIGEN_DONT_INLINE void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, const Preconditioner& precond, Index& iters, typename Dest::RealScalar& tol_error) { using std::sqrt; using std::abs; typedef typename Dest::RealScalar RealScalar; typedef typename Dest::Scalar Scalar; typedef Matrix<Scalar,Dynamic,1> VectorType; RealScalar tol = tol_error; Index maxIters = iters; Index m = mat.rows(), n = mat.cols(); VectorType residual = rhs - mat * x; VectorType normal_residual = mat.adjoint() * residual; RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm(); if(rhsNorm2 == 0) { x.setZero(); iters = 0; tol_error = 0; return; } RealScalar threshold = tol*tol*rhsNorm2; RealScalar residualNorm2 = normal_residual.squaredNorm(); if (residualNorm2 < threshold) { iters = 0; tol_error = sqrt(residualNorm2 / rhsNorm2); return; } VectorType p(n); p = precond.solve(normal_residual); // initial search direction VectorType z(n), tmp(m); RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM Index i = 0; while(i < maxIters) { tmp.noalias() = mat * p; Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir x += alpha * p; // update solution residual -= alpha * tmp; // update residual normal_residual = mat.adjoint() * residual; // update residual of the normal equation residualNorm2 = normal_residual.squaredNorm(); if(residualNorm2 < threshold) break; z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual" RealScalar absOld = absNew; absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction p = z + beta * p; // update search direction i++; } tol_error = sqrt(residualNorm2 / rhsNorm2); iters = i; } } template< typename _MatrixType, typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> > class LeastSquaresConjugateGradient; namespace internal { template< typename _MatrixType, typename _Preconditioner> struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> > { typedef _MatrixType MatrixType; typedef _Preconditioner Preconditioner; }; } /** \ingroup IterativeLinearSolvers_Module * \brief A conjugate gradient solver for sparse (or dense) least-square problems * * This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm. * The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability. * Otherwise, the SparseLU or SparseQR classes might be preferable. * The matrix A and the vectors x and b can be either dense or sparse. * * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix. * \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner * * \implsparsesolverconcept * * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations * and NumTraits<Scalar>::epsilon() for the tolerance. * * This class can be used as the direct solver classes. Here is a typical usage example: \code int m=1000000, n = 10000; VectorXd x(n), b(m); SparseMatrix<double> A(m,n); // fill A and b LeastSquaresConjugateGradient<SparseMatrix<double> > lscg; lscg.compute(A); x = lscg.solve(b); std::cout << "#iterations: " << lscg.iterations() << std::endl; std::cout << "estimated error: " << lscg.error() << std::endl; // update b, and solve again x = lscg.solve(b); \endcode * * By default the iterations start with x=0 as an initial guess of the solution. * One can control the start using the solveWithGuess() method. * * \sa class ConjugateGradient, SparseLU, SparseQR */ template< typename _MatrixType, typename _Preconditioner> class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> > { typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base; using Base::matrix; using Base::m_error; using Base::m_iterations; using Base::m_info; using Base::m_isInitialized; public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef _Preconditioner Preconditioner; public: /** Default constructor. */ LeastSquaresConjugateGradient() : Base() {} /** Initialize the solver with matrix \a A for further \c Ax=b solving. * * This constructor is a shortcut for the default constructor followed * by a call to compute(). * * \warning this class stores a reference to the matrix A as well as some * precomputed values that depend on it. Therefore, if \a A is changed * this class becomes invalid. Call compute() to update it with the new * matrix A, or modify a copy of A. */ template<typename MatrixDerived> explicit LeastSquaresConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {} ~LeastSquaresConjugateGradient() {} /** \internal */ template<typename Rhs,typename Dest> void _solve_with_guess_impl(const Rhs& b, Dest& x) const { m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; for(Index j=0; j<b.cols(); ++j) { m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; typename Dest::ColXpr xj(x,j); internal::least_square_conjugate_gradient(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error); } m_isInitialized = true; m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; } /** \internal */ using Base::_solve_impl; template<typename Rhs,typename Dest> void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const { x.setZero(); _solve_with_guess_impl(b.derived(),x); } }; } // end namespace Eigen #endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H