// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_INCOMPLETE_CHOlESKY_H #define EIGEN_INCOMPLETE_CHOlESKY_H #include <vector> #include <list> namespace Eigen { /** * \brief Modified Incomplete Cholesky with dual threshold * * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 * * \tparam Scalar the scalar type of the input matrices * \tparam _UpLo The triangular part that will be used for the computations. It can be Lower * or Upper. Default is Lower. * \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>, * unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering<int>. * * \implsparsesolverconcept * * It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$ * where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a * fill-in reducing permutation as computed by the ordering method. * * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out, * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed * on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where * \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$. * If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by * the info() method, then you can either increase the initial shift, or better use another preconditioning technique. * */ template <typename Scalar, int _UpLo = Lower, typename _OrderingType = #ifndef EIGEN_MPL2_ONLY AMDOrdering<int> #else NaturalOrdering<int> #endif > class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > { protected: typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base; using Base::m_isInitialized; public: typedef typename NumTraits<Scalar>::Real RealScalar; typedef _OrderingType OrderingType; typedef typename OrderingType::PermutationType PermutationType; typedef typename PermutationType::StorageIndex StorageIndex; typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType; typedef Matrix<Scalar,Dynamic,1> VectorSx; typedef Matrix<RealScalar,Dynamic,1> VectorRx; typedef Matrix<StorageIndex,Dynamic, 1> VectorIx; typedef std::vector<std::list<StorageIndex> > VectorList; enum { UpLo = _UpLo }; enum { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic }; public: /** Default constructor leaving the object in a partly non-initialized stage. * * You must call compute() or the pair analyzePattern()/factorize() to make it valid. * * \sa IncompleteCholesky(const MatrixType&) */ IncompleteCholesky() : m_initialShift(1e-3),m_factorizationIsOk(false) {} /** Constructor computing the incomplete factorization for the given matrix \a matrix. */ template<typename MatrixType> IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_factorizationIsOk(false) { compute(matrix); } /** \returns number of rows of the factored matrix */ Index rows() const { return m_L.rows(); } /** \returns number of columns of the factored matrix */ Index cols() const { return m_L.cols(); } /** \brief Reports whether previous computation was successful. * * It triggers an assertion if \c *this has not been initialized through the respective constructor, * or a call to compute() or analyzePattern(). * * \returns \c Success if computation was successful, * \c NumericalIssue if the matrix appears to be negative. */ ComputationInfo info() const { eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized."); return m_info; } /** \brief Set the initial shift parameter \f$ \sigma \f$. */ void setInitialShift(RealScalar shift) { m_initialShift = shift; } /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat */ template<typename MatrixType> void analyzePattern(const MatrixType& mat) { OrderingType ord; PermutationType pinv; ord(mat.template selfadjointView<UpLo>(), pinv); if(pinv.size()>0) m_perm = pinv.inverse(); else m_perm.resize(0); m_L.resize(mat.rows(), mat.cols()); m_analysisIsOk = true; m_isInitialized = true; m_info = Success; } /** \brief Performs the numerical factorization of the input matrix \a mat * * The method analyzePattern() or compute() must have been called beforehand * with a matrix having the same pattern. * * \sa compute(), analyzePattern() */ template<typename MatrixType> void factorize(const MatrixType& mat); /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat * * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods. * * \sa analyzePattern(), factorize() */ template<typename MatrixType> void compute(const MatrixType& mat) { analyzePattern(mat); factorize(mat); } // internal template<typename Rhs, typename Dest> void _solve_impl(const Rhs& b, Dest& x) const { eigen_assert(m_factorizationIsOk && "factorize() should be called first"); if (m_perm.rows() == b.rows()) x = m_perm * b; else x = b; x = m_scale.asDiagonal() * x; x = m_L.template triangularView<Lower>().solve(x); x = m_L.adjoint().template triangularView<Upper>().solve(x); x = m_scale.asDiagonal() * x; if (m_perm.rows() == b.rows()) x = m_perm.inverse() * x; } /** \returns the sparse lower triangular factor L */ const FactorType& matrixL() const { eigen_assert("m_factorizationIsOk"); return m_L; } /** \returns a vector representing the scaling factor S */ const VectorRx& scalingS() const { eigen_assert("m_factorizationIsOk"); return m_scale; } /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */ const PermutationType& permutationP() const { eigen_assert("m_analysisIsOk"); return m_perm; } protected: FactorType m_L; // The lower part stored in CSC VectorRx m_scale; // The vector for scaling the matrix RealScalar m_initialShift; // The initial shift parameter bool m_analysisIsOk; bool m_factorizationIsOk; ComputationInfo m_info; PermutationType m_perm; private: inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol); }; // Based on the following paper: // C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with // Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 // http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf template<typename Scalar, int _UpLo, typename OrderingType> template<typename _MatrixType> void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat) { using std::sqrt; eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added // Apply the fill-reducing permutation computed in analyzePattern() if (m_perm.rows() == mat.rows() ) // To detect the null permutation { // The temporary is needed to make sure that the diagonal entry is properly sorted FactorType tmp(mat.rows(), mat.cols()); tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm); m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>(); } else { m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>(); } Index n = m_L.cols(); Index nnz = m_L.nonZeros(); Map<VectorSx> vals(m_L.valuePtr(), nnz); //values Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization VectorList listCol(n); // listCol(j) is a linked list of columns to update column j VectorSx col_vals(n); // Store a nonzero values in each column VectorIx col_irow(n); // Row indices of nonzero elements in each column VectorIx col_pattern(n); col_pattern.fill(-1); StorageIndex col_nnz; // Computes the scaling factors m_scale.resize(n); m_scale.setZero(); for (Index j = 0; j < n; j++) for (Index k = colPtr[j]; k < colPtr[j+1]; k++) { m_scale(j) += numext::abs2(vals(k)); if(rowIdx[k]!=j) m_scale(rowIdx[k]) += numext::abs2(vals(k)); } m_scale = m_scale.cwiseSqrt().cwiseSqrt(); for (Index j = 0; j < n; ++j) if(m_scale(j)>(std::numeric_limits<RealScalar>::min)()) m_scale(j) = RealScalar(1)/m_scale(j); else m_scale(j) = 1; // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster) // Scale and compute the shift for the matrix RealScalar mindiag = NumTraits<RealScalar>::highest(); for (Index j = 0; j < n; j++) { for (Index k = colPtr[j]; k < colPtr[j+1]; k++) vals[k] *= (m_scale(j)*m_scale(rowIdx[k])); eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored"); mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag); } FactorType L_save = m_L; RealScalar shift = 0; if(mindiag <= RealScalar(0.)) shift = m_initialShift - mindiag; m_info = NumericalIssue; // Try to perform the incomplete factorization using the current shift int iter = 0; do { // Apply the shift to the diagonal elements of the matrix for (Index j = 0; j < n; j++) vals[colPtr[j]] += shift; // jki version of the Cholesky factorization Index j=0; for (; j < n; ++j) { // Left-looking factorization of the j-th column // First, load the j-th column into col_vals Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored col_nnz = 0; for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++) { StorageIndex l = rowIdx[i]; col_vals(col_nnz) = vals[i]; col_irow(col_nnz) = l; col_pattern(l) = col_nnz; col_nnz++; } { typename std::list<StorageIndex>::iterator k; // Browse all previous columns that will update column j for(k = listCol[j].begin(); k != listCol[j].end(); k++) { Index jk = firstElt(*k); // First element to use in the column eigen_internal_assert(rowIdx[jk]==j); Scalar v_j_jk = numext::conj(vals[jk]); jk += 1; for (Index i = jk; i < colPtr[*k+1]; i++) { StorageIndex l = rowIdx[i]; if(col_pattern[l]<0) { col_vals(col_nnz) = vals[i] * v_j_jk; col_irow[col_nnz] = l; col_pattern(l) = col_nnz; col_nnz++; } else col_vals(col_pattern[l]) -= vals[i] * v_j_jk; } updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol); } } // Scale the current column if(numext::real(diag) <= 0) { if(++iter>=10) return; // increase shift shift = numext::maxi(m_initialShift,RealScalar(2)*shift); // restore m_L, col_pattern, and listCol vals = Map<const VectorSx>(L_save.valuePtr(), nnz); rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz); colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n+1); col_pattern.fill(-1); for(Index i=0; i<n; ++i) listCol[i].clear(); break; } RealScalar rdiag = sqrt(numext::real(diag)); vals[colPtr[j]] = rdiag; for (Index k = 0; k<col_nnz; ++k) { Index i = col_irow[k]; //Scale col_vals(k) /= rdiag; //Update the remaining diagonals with col_vals vals[colPtr[i]] -= numext::abs2(col_vals(k)); } // Select the largest p elements // p is the original number of elements in the column (without the diagonal) Index p = colPtr[j+1] - colPtr[j] - 1 ; Ref<VectorSx> cvals = col_vals.head(col_nnz); Ref<VectorIx> cirow = col_irow.head(col_nnz); internal::QuickSplit(cvals,cirow, p); // Insert the largest p elements in the matrix Index cpt = 0; for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++) { vals[i] = col_vals(cpt); rowIdx[i] = col_irow(cpt); // restore col_pattern: col_pattern(col_irow(cpt)) = -1; cpt++; } // Get the first smallest row index and put it after the diagonal element Index jk = colPtr(j)+1; updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol); } if(j==n) { m_factorizationIsOk = true; m_info = Success; } } while(m_info!=Success); } template<typename Scalar, int _UpLo, typename OrderingType> inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol) { if (jk < colPtr(col+1) ) { Index p = colPtr(col+1) - jk; Index minpos; rowIdx.segment(jk,p).minCoeff(&minpos); minpos += jk; if (rowIdx(minpos) != rowIdx(jk)) { //Swap std::swap(rowIdx(jk),rowIdx(minpos)); std::swap(vals(jk),vals(minpos)); } firstElt(col) = internal::convert_index<StorageIndex,Index>(jk); listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col)); } } } // end namespace Eigen #endif