// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CONJUGATE_GRADIENT_H #define EIGEN_CONJUGATE_GRADIENT_H namespace Eigen { namespace internal { /** \internal Low-level conjugate gradient algorithm * \param mat The matrix A * \param rhs The right hand side vector b * \param x On input and initial solution, on output the computed solution. * \param precond A preconditioner being able to efficiently solve for an * approximation of Ax=b (regardless of b) * \param iters On input the max number of iteration, on output the number of performed iterations. * \param tol_error On input the tolerance error, on output an estimation of the relative error. */ template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> EIGEN_DONT_INLINE void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, const Preconditioner& precond, Index& iters, typename Dest::RealScalar& tol_error) { using std::sqrt; using std::abs; typedef typename Dest::RealScalar RealScalar; typedef typename Dest::Scalar Scalar; typedef Matrix<Scalar,Dynamic,1> VectorType; RealScalar tol = tol_error; Index maxIters = iters; Index n = mat.cols(); VectorType residual = rhs - mat * x; //initial residual RealScalar rhsNorm2 = rhs.squaredNorm(); if(rhsNorm2 == 0) { x.setZero(); iters = 0; tol_error = 0; return; } RealScalar threshold = tol*tol*rhsNorm2; RealScalar residualNorm2 = residual.squaredNorm(); if (residualNorm2 < threshold) { iters = 0; tol_error = sqrt(residualNorm2 / rhsNorm2); return; } VectorType p(n); p = precond.solve(residual); // initial search direction VectorType z(n), tmp(n); RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM Index i = 0; while(i < maxIters) { tmp.noalias() = mat * p; // the bottleneck of the algorithm Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir x += alpha * p; // update solution residual -= alpha * tmp; // update residual residualNorm2 = residual.squaredNorm(); if(residualNorm2 < threshold) break; z = precond.solve(residual); // approximately solve for "A z = residual" RealScalar absOld = absNew; absNew = numext::real(residual.dot(z)); // update the absolute value of r RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction p = z + beta * p; // update search direction i++; } tol_error = sqrt(residualNorm2 / rhsNorm2); iters = i; } } template< typename _MatrixType, int _UpLo=Lower, typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > class ConjugateGradient; namespace internal { template< typename _MatrixType, int _UpLo, typename _Preconditioner> struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> > { typedef _MatrixType MatrixType; typedef _Preconditioner Preconditioner; }; } /** \ingroup IterativeLinearSolvers_Module * \brief A conjugate gradient solver for sparse (or dense) self-adjoint problems * * This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm. * The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse. * * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix. * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower, * \c Upper, or \c Lower|Upper in which the full matrix entries will be considered. * Default is \c Lower, best performance is \c Lower|Upper. * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner * * \implsparsesolverconcept * * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations * and NumTraits<Scalar>::epsilon() for the tolerance. * * The tolerance corresponds to the relative residual error: |Ax-b|/|b| * * \b Performance: Even though the default value of \c _UpLo is \c Lower, significantly higher performance is * achieved when using a complete matrix and \b Lower|Upper as the \a _UpLo template parameter. Moreover, in this * case multi-threading can be exploited if the user code is compiled with OpenMP enabled. * See \ref TopicMultiThreading for details. * * This class can be used as the direct solver classes. Here is a typical usage example: \code int n = 10000; VectorXd x(n), b(n); SparseMatrix<double> A(n,n); // fill A and b ConjugateGradient<SparseMatrix<double>, Lower|Upper> cg; cg.compute(A); x = cg.solve(b); std::cout << "#iterations: " << cg.iterations() << std::endl; std::cout << "estimated error: " << cg.error() << std::endl; // update b, and solve again x = cg.solve(b); \endcode * * By default the iterations start with x=0 as an initial guess of the solution. * One can control the start using the solveWithGuess() method. * * ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. * * \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner */ template< typename _MatrixType, int _UpLo, typename _Preconditioner> class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> > { typedef IterativeSolverBase<ConjugateGradient> Base; using Base::matrix; using Base::m_error; using Base::m_iterations; using Base::m_info; using Base::m_isInitialized; public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef _Preconditioner Preconditioner; enum { UpLo = _UpLo }; public: /** Default constructor. */ ConjugateGradient() : Base() {} /** Initialize the solver with matrix \a A for further \c Ax=b solving. * * This constructor is a shortcut for the default constructor followed * by a call to compute(). * * \warning this class stores a reference to the matrix A as well as some * precomputed values that depend on it. Therefore, if \a A is changed * this class becomes invalid. Call compute() to update it with the new * matrix A, or modify a copy of A. */ template<typename MatrixDerived> explicit ConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {} ~ConjugateGradient() {} /** \internal */ template<typename Rhs,typename Dest> void _solve_with_guess_impl(const Rhs& b, Dest& x) const { typedef typename Base::MatrixWrapper MatrixWrapper; typedef typename Base::ActualMatrixType ActualMatrixType; enum { TransposeInput = (!MatrixWrapper::MatrixFree) && (UpLo==(Lower|Upper)) && (!MatrixType::IsRowMajor) && (!NumTraits<Scalar>::IsComplex) }; typedef typename internal::conditional<TransposeInput,Transpose<const ActualMatrixType>, ActualMatrixType const&>::type RowMajorWrapper; EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY); typedef typename internal::conditional<UpLo==(Lower|Upper), RowMajorWrapper, typename MatrixWrapper::template ConstSelfAdjointViewReturnType<UpLo>::Type >::type SelfAdjointWrapper; m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; for(Index j=0; j<b.cols(); ++j) { m_iterations = Base::maxIterations(); m_error = Base::m_tolerance; typename Dest::ColXpr xj(x,j); RowMajorWrapper row_mat(matrix()); internal::conjugate_gradient(SelfAdjointWrapper(row_mat), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error); } m_isInitialized = true; m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; } /** \internal */ using Base::_solve_impl; template<typename Rhs,typename Dest> void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const { x.setZero(); _solve_with_guess_impl(b.derived(),x); } protected: }; } // end namespace Eigen #endif // EIGEN_CONJUGATE_GRADIENT_H