// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_BASIC_PRECONDITIONERS_H #define EIGEN_BASIC_PRECONDITIONERS_H namespace Eigen { /** \ingroup IterativeLinearSolvers_Module * \brief A preconditioner based on the digonal entries * * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix. * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: \code A.diagonal().asDiagonal() . x = b \endcode * * \tparam _Scalar the type of the scalar. * * \implsparsesolverconcept * * This preconditioner is suitable for both selfadjoint and general problems. * The diagonal entries are pre-inverted and stored into a dense vector. * * \note A variant that has yet to be implemented would attempt to preserve the norm of each column. * * \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient */ template <typename _Scalar> class DiagonalPreconditioner { typedef _Scalar Scalar; typedef Matrix<Scalar,Dynamic,1> Vector; public: typedef typename Vector::StorageIndex StorageIndex; enum { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic }; DiagonalPreconditioner() : m_isInitialized(false) {} template<typename MatType> explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols()) { compute(mat); } Index rows() const { return m_invdiag.size(); } Index cols() const { return m_invdiag.size(); } template<typename MatType> DiagonalPreconditioner& analyzePattern(const MatType& ) { return *this; } template<typename MatType> DiagonalPreconditioner& factorize(const MatType& mat) { m_invdiag.resize(mat.cols()); for(int j=0; j<mat.outerSize(); ++j) { typename MatType::InnerIterator it(mat,j); while(it && it.index()!=j) ++it; if(it && it.index()==j && it.value()!=Scalar(0)) m_invdiag(j) = Scalar(1)/it.value(); else m_invdiag(j) = Scalar(1); } m_isInitialized = true; return *this; } template<typename MatType> DiagonalPreconditioner& compute(const MatType& mat) { return factorize(mat); } /** \internal */ template<typename Rhs, typename Dest> void _solve_impl(const Rhs& b, Dest& x) const { x = m_invdiag.array() * b.array() ; } template<typename Rhs> inline const Solve<DiagonalPreconditioner, Rhs> solve(const MatrixBase<Rhs>& b) const { eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized."); eigen_assert(m_invdiag.size()==b.rows() && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b"); return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived()); } ComputationInfo info() { return Success; } protected: Vector m_invdiag; bool m_isInitialized; }; /** \ingroup IterativeLinearSolvers_Module * \brief Jacobi preconditioner for LeastSquaresConjugateGradient * * This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix. * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: \code (A.adjoint() * A).diagonal().asDiagonal() * x = b \endcode * * \tparam _Scalar the type of the scalar. * * \implsparsesolverconcept * * The diagonal entries are pre-inverted and stored into a dense vector. * * \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner */ template <typename _Scalar> class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar> { typedef _Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef DiagonalPreconditioner<_Scalar> Base; using Base::m_invdiag; public: LeastSquareDiagonalPreconditioner() : Base() {} template<typename MatType> explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base() { compute(mat); } template<typename MatType> LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& ) { return *this; } template<typename MatType> LeastSquareDiagonalPreconditioner& factorize(const MatType& mat) { // Compute the inverse squared-norm of each column of mat m_invdiag.resize(mat.cols()); if(MatType::IsRowMajor) { m_invdiag.setZero(); for(Index j=0; j<mat.outerSize(); ++j) { for(typename MatType::InnerIterator it(mat,j); it; ++it) m_invdiag(it.index()) += numext::abs2(it.value()); } for(Index j=0; j<mat.cols(); ++j) if(numext::real(m_invdiag(j))>RealScalar(0)) m_invdiag(j) = RealScalar(1)/numext::real(m_invdiag(j)); } else { for(Index j=0; j<mat.outerSize(); ++j) { RealScalar sum = mat.innerVector(j).squaredNorm(); if(sum>RealScalar(0)) m_invdiag(j) = RealScalar(1)/sum; else m_invdiag(j) = RealScalar(1); } } Base::m_isInitialized = true; return *this; } template<typename MatType> LeastSquareDiagonalPreconditioner& compute(const MatType& mat) { return factorize(mat); } ComputationInfo info() { return Success; } protected: }; /** \ingroup IterativeLinearSolvers_Module * \brief A naive preconditioner which approximates any matrix as the identity matrix * * \implsparsesolverconcept * * \sa class DiagonalPreconditioner */ class IdentityPreconditioner { public: IdentityPreconditioner() {} template<typename MatrixType> explicit IdentityPreconditioner(const MatrixType& ) {} template<typename MatrixType> IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; } template<typename MatrixType> IdentityPreconditioner& factorize(const MatrixType& ) { return *this; } template<typename MatrixType> IdentityPreconditioner& compute(const MatrixType& ) { return *this; } template<typename Rhs> inline const Rhs& solve(const Rhs& b) const { return b; } ComputationInfo info() { return Success; } }; } // end namespace Eigen #endif // EIGEN_BASIC_PRECONDITIONERS_H