// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_META_H #define EIGEN_META_H #if defined(__CUDA_ARCH__) #include <cfloat> #include <math_constants.h> #endif #if EIGEN_COMP_ICC>=1600 && __cplusplus >= 201103L #include <cstdint> #endif namespace Eigen { typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex; /** * \brief The Index type as used for the API. * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. * \sa \blank \ref TopicPreprocessorDirectives, StorageIndex. */ typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index; namespace internal { /** \internal * \file Meta.h * This file contains generic metaprogramming classes which are not specifically related to Eigen. * \note In case you wonder, yes we're aware that Boost already provides all these features, * we however don't want to add a dependency to Boost. */ // Only recent versions of ICC complain about using ptrdiff_t to hold pointers, // and older versions do not provide *intptr_t types. #if EIGEN_COMP_ICC>=1600 && __cplusplus >= 201103L typedef std::intptr_t IntPtr; typedef std::uintptr_t UIntPtr; #else typedef std::ptrdiff_t IntPtr; typedef std::size_t UIntPtr; #endif struct true_type { enum { value = 1 }; }; struct false_type { enum { value = 0 }; }; template<bool Condition, typename Then, typename Else> struct conditional { typedef Then type; }; template<typename Then, typename Else> struct conditional <false, Then, Else> { typedef Else type; }; template<typename T, typename U> struct is_same { enum { value = 0 }; }; template<typename T> struct is_same<T,T> { enum { value = 1 }; }; template<typename T> struct remove_reference { typedef T type; }; template<typename T> struct remove_reference<T&> { typedef T type; }; template<typename T> struct remove_pointer { typedef T type; }; template<typename T> struct remove_pointer<T*> { typedef T type; }; template<typename T> struct remove_pointer<T*const> { typedef T type; }; template <class T> struct remove_const { typedef T type; }; template <class T> struct remove_const<const T> { typedef T type; }; template <class T> struct remove_const<const T[]> { typedef T type[]; }; template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; }; template<typename T> struct remove_all { typedef T type; }; template<typename T> struct remove_all<const T> { typedef typename remove_all<T>::type type; }; template<typename T> struct remove_all<T const&> { typedef typename remove_all<T>::type type; }; template<typename T> struct remove_all<T&> { typedef typename remove_all<T>::type type; }; template<typename T> struct remove_all<T const*> { typedef typename remove_all<T>::type type; }; template<typename T> struct remove_all<T*> { typedef typename remove_all<T>::type type; }; template<typename T> struct is_arithmetic { enum { value = false }; }; template<> struct is_arithmetic<float> { enum { value = true }; }; template<> struct is_arithmetic<double> { enum { value = true }; }; template<> struct is_arithmetic<long double> { enum { value = true }; }; template<> struct is_arithmetic<bool> { enum { value = true }; }; template<> struct is_arithmetic<char> { enum { value = true }; }; template<> struct is_arithmetic<signed char> { enum { value = true }; }; template<> struct is_arithmetic<unsigned char> { enum { value = true }; }; template<> struct is_arithmetic<signed short> { enum { value = true }; }; template<> struct is_arithmetic<unsigned short>{ enum { value = true }; }; template<> struct is_arithmetic<signed int> { enum { value = true }; }; template<> struct is_arithmetic<unsigned int> { enum { value = true }; }; template<> struct is_arithmetic<signed long> { enum { value = true }; }; template<> struct is_arithmetic<unsigned long> { enum { value = true }; }; template<typename T> struct is_integral { enum { value = false }; }; template<> struct is_integral<bool> { enum { value = true }; }; template<> struct is_integral<char> { enum { value = true }; }; template<> struct is_integral<signed char> { enum { value = true }; }; template<> struct is_integral<unsigned char> { enum { value = true }; }; template<> struct is_integral<signed short> { enum { value = true }; }; template<> struct is_integral<unsigned short> { enum { value = true }; }; template<> struct is_integral<signed int> { enum { value = true }; }; template<> struct is_integral<unsigned int> { enum { value = true }; }; template<> struct is_integral<signed long> { enum { value = true }; }; template<> struct is_integral<unsigned long> { enum { value = true }; }; template <typename T> struct add_const { typedef const T type; }; template <typename T> struct add_const<T&> { typedef T& type; }; template <typename T> struct is_const { enum { value = 0 }; }; template <typename T> struct is_const<T const> { enum { value = 1 }; }; template<typename T> struct add_const_on_value_type { typedef const T type; }; template<typename T> struct add_const_on_value_type<T&> { typedef T const& type; }; template<typename T> struct add_const_on_value_type<T*> { typedef T const* type; }; template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; }; template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; }; template<typename From, typename To> struct is_convertible_impl { private: struct any_conversion { template <typename T> any_conversion(const volatile T&); template <typename T> any_conversion(T&); }; struct yes {int a[1];}; struct no {int a[2];}; static yes test(const To&, int); static no test(any_conversion, ...); public: static From ms_from; #ifdef __INTEL_COMPILER #pragma warning push #pragma warning ( disable : 2259 ) #endif enum { value = sizeof(test(ms_from, 0))==sizeof(yes) }; #ifdef __INTEL_COMPILER #pragma warning pop #endif }; template<typename From, typename To> struct is_convertible { enum { value = is_convertible_impl<typename remove_all<From>::type, typename remove_all<To >::type>::value }; }; /** \internal Allows to enable/disable an overload * according to a compile time condition. */ template<bool Condition, typename T=void> struct enable_if; template<typename T> struct enable_if<true,T> { typedef T type; }; #if defined(__CUDA_ARCH__) #if !defined(__FLT_EPSILON__) #define __FLT_EPSILON__ FLT_EPSILON #define __DBL_EPSILON__ DBL_EPSILON #endif namespace device { template<typename T> struct numeric_limits { EIGEN_DEVICE_FUNC static T epsilon() { return 0; } static T (max)() { assert(false && "Highest not supported for this type"); } static T (min)() { assert(false && "Lowest not supported for this type"); } static T infinity() { assert(false && "Infinity not supported for this type"); } static T quiet_NaN() { assert(false && "quiet_NaN not supported for this type"); } }; template<> struct numeric_limits<float> { EIGEN_DEVICE_FUNC static float epsilon() { return __FLT_EPSILON__; } EIGEN_DEVICE_FUNC static float (max)() { return CUDART_MAX_NORMAL_F; } EIGEN_DEVICE_FUNC static float (min)() { return FLT_MIN; } EIGEN_DEVICE_FUNC static float infinity() { return CUDART_INF_F; } EIGEN_DEVICE_FUNC static float quiet_NaN() { return CUDART_NAN_F; } }; template<> struct numeric_limits<double> { EIGEN_DEVICE_FUNC static double epsilon() { return __DBL_EPSILON__; } EIGEN_DEVICE_FUNC static double (max)() { return DBL_MAX; } EIGEN_DEVICE_FUNC static double (min)() { return DBL_MIN; } EIGEN_DEVICE_FUNC static double infinity() { return CUDART_INF; } EIGEN_DEVICE_FUNC static double quiet_NaN() { return CUDART_NAN; } }; template<> struct numeric_limits<int> { EIGEN_DEVICE_FUNC static int epsilon() { return 0; } EIGEN_DEVICE_FUNC static int (max)() { return INT_MAX; } EIGEN_DEVICE_FUNC static int (min)() { return INT_MIN; } }; template<> struct numeric_limits<unsigned int> { EIGEN_DEVICE_FUNC static unsigned int epsilon() { return 0; } EIGEN_DEVICE_FUNC static unsigned int (max)() { return UINT_MAX; } EIGEN_DEVICE_FUNC static unsigned int (min)() { return 0; } }; template<> struct numeric_limits<long> { EIGEN_DEVICE_FUNC static long epsilon() { return 0; } EIGEN_DEVICE_FUNC static long (max)() { return LONG_MAX; } EIGEN_DEVICE_FUNC static long (min)() { return LONG_MIN; } }; template<> struct numeric_limits<unsigned long> { EIGEN_DEVICE_FUNC static unsigned long epsilon() { return 0; } EIGEN_DEVICE_FUNC static unsigned long (max)() { return ULONG_MAX; } EIGEN_DEVICE_FUNC static unsigned long (min)() { return 0; } }; template<> struct numeric_limits<long long> { EIGEN_DEVICE_FUNC static long long epsilon() { return 0; } EIGEN_DEVICE_FUNC static long long (max)() { return LLONG_MAX; } EIGEN_DEVICE_FUNC static long long (min)() { return LLONG_MIN; } }; template<> struct numeric_limits<unsigned long long> { EIGEN_DEVICE_FUNC static unsigned long long epsilon() { return 0; } EIGEN_DEVICE_FUNC static unsigned long long (max)() { return ULLONG_MAX; } EIGEN_DEVICE_FUNC static unsigned long long (min)() { return 0; } }; } #endif /** \internal * A base class do disable default copy ctor and copy assignement operator. */ class noncopyable { EIGEN_DEVICE_FUNC noncopyable(const noncopyable&); EIGEN_DEVICE_FUNC const noncopyable& operator=(const noncopyable&); protected: EIGEN_DEVICE_FUNC noncopyable() {} EIGEN_DEVICE_FUNC ~noncopyable() {} }; /** \internal * Convenient struct to get the result type of a unary or binary functor. * * It supports both the current STL mechanism (using the result_type member) as well as * upcoming next STL generation (using a templated result member). * If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack. */ #if EIGEN_HAS_STD_RESULT_OF template<typename T> struct result_of { typedef typename std::result_of<T>::type type1; typedef typename remove_all<type1>::type type; }; #else template<typename T> struct result_of { }; struct has_none {int a[1];}; struct has_std_result_type {int a[2];}; struct has_tr1_result {int a[3];}; template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)> struct unary_result_of_select {typedef typename internal::remove_all<ArgType>::type type;}; template<typename Func, typename ArgType> struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;}; template<typename Func, typename ArgType> struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;}; template<typename Func, typename ArgType> struct result_of<Func(ArgType)> { template<typename T> static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); template<typename T> static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0); static has_none testFunctor(...); // note that the following indirection is needed for gcc-3.3 enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type; }; template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)> struct binary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;}; template<typename Func, typename ArgType0, typename ArgType1> struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)> {typedef typename Func::result_type type;}; template<typename Func, typename ArgType0, typename ArgType1> struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;}; template<typename Func, typename ArgType0, typename ArgType1> struct result_of<Func(ArgType0,ArgType1)> { template<typename T> static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); template<typename T> static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0); static has_none testFunctor(...); // note that the following indirection is needed for gcc-3.3 enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type; }; template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2, int SizeOf=sizeof(has_none)> struct ternary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;}; template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2> struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_std_result_type)> {typedef typename Func::result_type type;}; template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2> struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType0,ArgType1,ArgType2)>::type type;}; template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2> struct result_of<Func(ArgType0,ArgType1,ArgType2)> { template<typename T> static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); template<typename T> static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1,ArgType2)>::type const * = 0); static has_none testFunctor(...); // note that the following indirection is needed for gcc-3.3 enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; typedef typename ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, FunctorType>::type type; }; #endif struct meta_yes { char a[1]; }; struct meta_no { char a[2]; }; // Check whether T::ReturnType does exist template <typename T> struct has_ReturnType { template <typename C> static meta_yes testFunctor(typename C::ReturnType const *); template <typename C> static meta_no testFunctor(...); enum { value = sizeof(testFunctor<T>(0)) == sizeof(meta_yes) }; }; template<typename T> const T* return_ptr(); template <typename T, typename IndexType=Index> struct has_nullary_operator { template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()())>0)>::type * = 0); static meta_no testFunctor(...); enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; }; template <typename T, typename IndexType=Index> struct has_unary_operator { template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0)))>0)>::type * = 0); static meta_no testFunctor(...); enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; }; template <typename T, typename IndexType=Index> struct has_binary_operator { template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0),IndexType(0)))>0)>::type * = 0); static meta_no testFunctor(...); enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; }; /** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer. * Usage example: \code meta_sqrt<1023>::ret \endcode */ template<int Y, int InfX = 0, int SupX = ((Y==1) ? 1 : Y/2), bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) > // use ?: instead of || just to shut up a stupid gcc 4.3 warning class meta_sqrt { enum { MidX = (InfX+SupX)/2, TakeInf = MidX*MidX > Y ? 1 : 0, NewInf = int(TakeInf) ? InfX : int(MidX), NewSup = int(TakeInf) ? int(MidX) : SupX }; public: enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret }; }; template<int Y, int InfX, int SupX> class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; }; /** \internal Computes the least common multiple of two positive integer A and B * at compile-time. It implements a naive algorithm testing all multiples of A. * It thus works better if A>=B. */ template<int A, int B, int K=1, bool Done = ((A*K)%B)==0> struct meta_least_common_multiple { enum { ret = meta_least_common_multiple<A,B,K+1>::ret }; }; template<int A, int B, int K> struct meta_least_common_multiple<A,B,K,true> { enum { ret = A*K }; }; /** \internal determines whether the product of two numeric types is allowed and what the return type is */ template<typename T, typename U> struct scalar_product_traits { enum { Defined = 0 }; }; // FIXME quick workaround around current limitation of result_of // template<typename Scalar, typename ArgType0, typename ArgType1> // struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> { // typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type; // }; } // end namespace internal namespace numext { #if defined(__CUDA_ARCH__) template<typename T> EIGEN_DEVICE_FUNC void swap(T &a, T &b) { T tmp = b; b = a; a = tmp; } #else template<typename T> EIGEN_STRONG_INLINE void swap(T &a, T &b) { std::swap(a,b); } #endif #if defined(__CUDA_ARCH__) using internal::device::numeric_limits; #else using std::numeric_limits; #endif // Integer division with rounding up. // T is assumed to be an integer type with a>=0, and b>0 template<typename T> T div_ceil(const T &a, const T &b) { return (a+b-1) / b; } } // end namespace numext } // end namespace Eigen #endif // EIGEN_META_H