// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_PARTIAL_REDUX_H #define EIGEN_PARTIAL_REDUX_H namespace Eigen { /** \class PartialReduxExpr * \ingroup Core_Module * * \brief Generic expression of a partially reduxed matrix * * \tparam MatrixType the type of the matrix we are applying the redux operation * \tparam MemberOp type of the member functor * \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal) * * This class represents an expression of a partial redux operator of a matrix. * It is the return type of some VectorwiseOp functions, * and most of the time this is the only way it is used. * * \sa class VectorwiseOp */ template< typename MatrixType, typename MemberOp, int Direction> class PartialReduxExpr; namespace internal { template<typename MatrixType, typename MemberOp, int Direction> struct traits<PartialReduxExpr<MatrixType, MemberOp, Direction> > : traits<MatrixType> { typedef typename MemberOp::result_type Scalar; typedef typename traits<MatrixType>::StorageKind StorageKind; typedef typename traits<MatrixType>::XprKind XprKind; typedef typename MatrixType::Scalar InputScalar; enum { RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime, ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime, Flags = RowsAtCompileTime == 1 ? RowMajorBit : 0, TraversalSize = Direction==Vertical ? MatrixType::RowsAtCompileTime : MatrixType::ColsAtCompileTime }; }; } template< typename MatrixType, typename MemberOp, int Direction> class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr<MatrixType, MemberOp, Direction> >::type, internal::no_assignment_operator { public: typedef typename internal::dense_xpr_base<PartialReduxExpr>::type Base; EIGEN_DENSE_PUBLIC_INTERFACE(PartialReduxExpr) EIGEN_DEVICE_FUNC explicit PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp()) : m_matrix(mat), m_functor(func) {} EIGEN_DEVICE_FUNC Index rows() const { return (Direction==Vertical ? 1 : m_matrix.rows()); } EIGEN_DEVICE_FUNC Index cols() const { return (Direction==Horizontal ? 1 : m_matrix.cols()); } EIGEN_DEVICE_FUNC typename MatrixType::Nested nestedExpression() const { return m_matrix; } EIGEN_DEVICE_FUNC const MemberOp& functor() const { return m_functor; } protected: typename MatrixType::Nested m_matrix; const MemberOp m_functor; }; #define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \ template <typename ResultType> \ struct member_##MEMBER { \ EIGEN_EMPTY_STRUCT_CTOR(member_##MEMBER) \ typedef ResultType result_type; \ template<typename Scalar, int Size> struct Cost \ { enum { value = COST }; }; \ template<typename XprType> \ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ ResultType operator()(const XprType& mat) const \ { return mat.MEMBER(); } \ } namespace internal { EIGEN_MEMBER_FUNCTOR(squaredNorm, Size * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost); EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost); EIGEN_MEMBER_FUNCTOR(stableNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost); EIGEN_MEMBER_FUNCTOR(blueNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost); EIGEN_MEMBER_FUNCTOR(hypotNorm, (Size-1) * functor_traits<scalar_hypot_op<Scalar> >::Cost ); EIGEN_MEMBER_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost); EIGEN_MEMBER_FUNCTOR(mean, (Size-1)*NumTraits<Scalar>::AddCost + NumTraits<Scalar>::MulCost); EIGEN_MEMBER_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost); EIGEN_MEMBER_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost); EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost); EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits<Scalar>::AddCost); EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits<Scalar>::AddCost); EIGEN_MEMBER_FUNCTOR(prod, (Size-1)*NumTraits<Scalar>::MulCost); template <int p, typename ResultType> struct member_lpnorm { typedef ResultType result_type; template<typename Scalar, int Size> struct Cost { enum { value = (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost }; }; EIGEN_DEVICE_FUNC member_lpnorm() {} template<typename XprType> EIGEN_DEVICE_FUNC inline ResultType operator()(const XprType& mat) const { return mat.template lpNorm<p>(); } }; template <typename BinaryOp, typename Scalar> struct member_redux { typedef typename result_of< BinaryOp(const Scalar&,const Scalar&) >::type result_type; template<typename _Scalar, int Size> struct Cost { enum { value = (Size-1) * functor_traits<BinaryOp>::Cost }; }; EIGEN_DEVICE_FUNC explicit member_redux(const BinaryOp func) : m_functor(func) {} template<typename Derived> EIGEN_DEVICE_FUNC inline result_type operator()(const DenseBase<Derived>& mat) const { return mat.redux(m_functor); } const BinaryOp m_functor; }; } /** \class VectorwiseOp * \ingroup Core_Module * * \brief Pseudo expression providing partial reduction operations * * \tparam ExpressionType the type of the object on which to do partial reductions * \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal) * * This class represents a pseudo expression with partial reduction features. * It is the return type of DenseBase::colwise() and DenseBase::rowwise() * and most of the time this is the only way it is used. * * Example: \include MatrixBase_colwise.cpp * Output: \verbinclude MatrixBase_colwise.out * * \sa DenseBase::colwise(), DenseBase::rowwise(), class PartialReduxExpr */ template<typename ExpressionType, int Direction> class VectorwiseOp { public: typedef typename ExpressionType::Scalar Scalar; typedef typename ExpressionType::RealScalar RealScalar; typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 typedef typename internal::ref_selector<ExpressionType>::non_const_type ExpressionTypeNested; typedef typename internal::remove_all<ExpressionTypeNested>::type ExpressionTypeNestedCleaned; template<template<typename _Scalar> class Functor, typename Scalar_=Scalar> struct ReturnType { typedef PartialReduxExpr<ExpressionType, Functor<Scalar_>, Direction > Type; }; template<typename BinaryOp> struct ReduxReturnType { typedef PartialReduxExpr<ExpressionType, internal::member_redux<BinaryOp,Scalar>, Direction > Type; }; enum { isVertical = (Direction==Vertical) ? 1 : 0, isHorizontal = (Direction==Horizontal) ? 1 : 0 }; protected: typedef typename internal::conditional<isVertical, typename ExpressionType::ColXpr, typename ExpressionType::RowXpr>::type SubVector; /** \internal * \returns the i-th subvector according to the \c Direction */ EIGEN_DEVICE_FUNC SubVector subVector(Index i) { return SubVector(m_matrix.derived(),i); } /** \internal * \returns the number of subvectors in the direction \c Direction */ EIGEN_DEVICE_FUNC Index subVectors() const { return isVertical?m_matrix.cols():m_matrix.rows(); } template<typename OtherDerived> struct ExtendedType { typedef Replicate<OtherDerived, isVertical ? 1 : ExpressionType::RowsAtCompileTime, isHorizontal ? 1 : ExpressionType::ColsAtCompileTime> Type; }; /** \internal * Replicates a vector to match the size of \c *this */ template<typename OtherDerived> EIGEN_DEVICE_FUNC typename ExtendedType<OtherDerived>::Type extendedTo(const DenseBase<OtherDerived>& other) const { EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxColsAtCompileTime==1), YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED) EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxRowsAtCompileTime==1), YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED) return typename ExtendedType<OtherDerived>::Type (other.derived(), isVertical ? 1 : m_matrix.rows(), isHorizontal ? 1 : m_matrix.cols()); } template<typename OtherDerived> struct OppositeExtendedType { typedef Replicate<OtherDerived, isHorizontal ? 1 : ExpressionType::RowsAtCompileTime, isVertical ? 1 : ExpressionType::ColsAtCompileTime> Type; }; /** \internal * Replicates a vector in the opposite direction to match the size of \c *this */ template<typename OtherDerived> EIGEN_DEVICE_FUNC typename OppositeExtendedType<OtherDerived>::Type extendedToOpposite(const DenseBase<OtherDerived>& other) const { EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxColsAtCompileTime==1), YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED) EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxRowsAtCompileTime==1), YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED) return typename OppositeExtendedType<OtherDerived>::Type (other.derived(), isHorizontal ? 1 : m_matrix.rows(), isVertical ? 1 : m_matrix.cols()); } public: EIGEN_DEVICE_FUNC explicit inline VectorwiseOp(ExpressionType& matrix) : m_matrix(matrix) {} /** \internal */ EIGEN_DEVICE_FUNC inline const ExpressionType& _expression() const { return m_matrix; } /** \returns a row or column vector expression of \c *this reduxed by \a func * * The template parameter \a BinaryOp is the type of the functor * of the custom redux operator. Note that func must be an associative operator. * * \sa class VectorwiseOp, DenseBase::colwise(), DenseBase::rowwise() */ template<typename BinaryOp> EIGEN_DEVICE_FUNC const typename ReduxReturnType<BinaryOp>::Type redux(const BinaryOp& func = BinaryOp()) const { return typename ReduxReturnType<BinaryOp>::Type(_expression(), internal::member_redux<BinaryOp,Scalar>(func)); } typedef typename ReturnType<internal::member_minCoeff>::Type MinCoeffReturnType; typedef typename ReturnType<internal::member_maxCoeff>::Type MaxCoeffReturnType; typedef typename ReturnType<internal::member_squaredNorm,RealScalar>::Type SquaredNormReturnType; typedef typename ReturnType<internal::member_norm,RealScalar>::Type NormReturnType; typedef typename ReturnType<internal::member_blueNorm,RealScalar>::Type BlueNormReturnType; typedef typename ReturnType<internal::member_stableNorm,RealScalar>::Type StableNormReturnType; typedef typename ReturnType<internal::member_hypotNorm,RealScalar>::Type HypotNormReturnType; typedef typename ReturnType<internal::member_sum>::Type SumReturnType; typedef typename ReturnType<internal::member_mean>::Type MeanReturnType; typedef typename ReturnType<internal::member_all>::Type AllReturnType; typedef typename ReturnType<internal::member_any>::Type AnyReturnType; typedef PartialReduxExpr<ExpressionType, internal::member_count<Index>, Direction> CountReturnType; typedef typename ReturnType<internal::member_prod>::Type ProdReturnType; typedef Reverse<const ExpressionType, Direction> ConstReverseReturnType; typedef Reverse<ExpressionType, Direction> ReverseReturnType; template<int p> struct LpNormReturnType { typedef PartialReduxExpr<ExpressionType, internal::member_lpnorm<p,RealScalar>,Direction> Type; }; /** \returns a row (or column) vector expression of the smallest coefficient * of each column (or row) of the referenced expression. * * \warning the result is undefined if \c *this contains NaN. * * Example: \include PartialRedux_minCoeff.cpp * Output: \verbinclude PartialRedux_minCoeff.out * * \sa DenseBase::minCoeff() */ EIGEN_DEVICE_FUNC const MinCoeffReturnType minCoeff() const { return MinCoeffReturnType(_expression()); } /** \returns a row (or column) vector expression of the largest coefficient * of each column (or row) of the referenced expression. * * \warning the result is undefined if \c *this contains NaN. * * Example: \include PartialRedux_maxCoeff.cpp * Output: \verbinclude PartialRedux_maxCoeff.out * * \sa DenseBase::maxCoeff() */ EIGEN_DEVICE_FUNC const MaxCoeffReturnType maxCoeff() const { return MaxCoeffReturnType(_expression()); } /** \returns a row (or column) vector expression of the squared norm * of each column (or row) of the referenced expression. * This is a vector with real entries, even if the original matrix has complex entries. * * Example: \include PartialRedux_squaredNorm.cpp * Output: \verbinclude PartialRedux_squaredNorm.out * * \sa DenseBase::squaredNorm() */ EIGEN_DEVICE_FUNC const SquaredNormReturnType squaredNorm() const { return SquaredNormReturnType(_expression()); } /** \returns a row (or column) vector expression of the norm * of each column (or row) of the referenced expression. * This is a vector with real entries, even if the original matrix has complex entries. * * Example: \include PartialRedux_norm.cpp * Output: \verbinclude PartialRedux_norm.out * * \sa DenseBase::norm() */ EIGEN_DEVICE_FUNC const NormReturnType norm() const { return NormReturnType(_expression()); } /** \returns a row (or column) vector expression of the norm * of each column (or row) of the referenced expression. * This is a vector with real entries, even if the original matrix has complex entries. * * Example: \include PartialRedux_norm.cpp * Output: \verbinclude PartialRedux_norm.out * * \sa DenseBase::norm() */ template<int p> EIGEN_DEVICE_FUNC const typename LpNormReturnType<p>::Type lpNorm() const { return typename LpNormReturnType<p>::Type(_expression()); } /** \returns a row (or column) vector expression of the norm * of each column (or row) of the referenced expression, using * Blue's algorithm. * This is a vector with real entries, even if the original matrix has complex entries. * * \sa DenseBase::blueNorm() */ EIGEN_DEVICE_FUNC const BlueNormReturnType blueNorm() const { return BlueNormReturnType(_expression()); } /** \returns a row (or column) vector expression of the norm * of each column (or row) of the referenced expression, avoiding * underflow and overflow. * This is a vector with real entries, even if the original matrix has complex entries. * * \sa DenseBase::stableNorm() */ EIGEN_DEVICE_FUNC const StableNormReturnType stableNorm() const { return StableNormReturnType(_expression()); } /** \returns a row (or column) vector expression of the norm * of each column (or row) of the referenced expression, avoiding * underflow and overflow using a concatenation of hypot() calls. * This is a vector with real entries, even if the original matrix has complex entries. * * \sa DenseBase::hypotNorm() */ EIGEN_DEVICE_FUNC const HypotNormReturnType hypotNorm() const { return HypotNormReturnType(_expression()); } /** \returns a row (or column) vector expression of the sum * of each column (or row) of the referenced expression. * * Example: \include PartialRedux_sum.cpp * Output: \verbinclude PartialRedux_sum.out * * \sa DenseBase::sum() */ EIGEN_DEVICE_FUNC const SumReturnType sum() const { return SumReturnType(_expression()); } /** \returns a row (or column) vector expression of the mean * of each column (or row) of the referenced expression. * * \sa DenseBase::mean() */ EIGEN_DEVICE_FUNC const MeanReturnType mean() const { return MeanReturnType(_expression()); } /** \returns a row (or column) vector expression representing * whether \b all coefficients of each respective column (or row) are \c true. * This expression can be assigned to a vector with entries of type \c bool. * * \sa DenseBase::all() */ EIGEN_DEVICE_FUNC const AllReturnType all() const { return AllReturnType(_expression()); } /** \returns a row (or column) vector expression representing * whether \b at \b least one coefficient of each respective column (or row) is \c true. * This expression can be assigned to a vector with entries of type \c bool. * * \sa DenseBase::any() */ EIGEN_DEVICE_FUNC const AnyReturnType any() const { return AnyReturnType(_expression()); } /** \returns a row (or column) vector expression representing * the number of \c true coefficients of each respective column (or row). * This expression can be assigned to a vector whose entries have the same type as is used to * index entries of the original matrix; for dense matrices, this is \c std::ptrdiff_t . * * Example: \include PartialRedux_count.cpp * Output: \verbinclude PartialRedux_count.out * * \sa DenseBase::count() */ EIGEN_DEVICE_FUNC const CountReturnType count() const { return CountReturnType(_expression()); } /** \returns a row (or column) vector expression of the product * of each column (or row) of the referenced expression. * * Example: \include PartialRedux_prod.cpp * Output: \verbinclude PartialRedux_prod.out * * \sa DenseBase::prod() */ EIGEN_DEVICE_FUNC const ProdReturnType prod() const { return ProdReturnType(_expression()); } /** \returns a matrix expression * where each column (or row) are reversed. * * Example: \include Vectorwise_reverse.cpp * Output: \verbinclude Vectorwise_reverse.out * * \sa DenseBase::reverse() */ EIGEN_DEVICE_FUNC const ConstReverseReturnType reverse() const { return ConstReverseReturnType( _expression() ); } /** \returns a writable matrix expression * where each column (or row) are reversed. * * \sa reverse() const */ EIGEN_DEVICE_FUNC ReverseReturnType reverse() { return ReverseReturnType( _expression() ); } typedef Replicate<ExpressionType,(isVertical?Dynamic:1),(isHorizontal?Dynamic:1)> ReplicateReturnType; EIGEN_DEVICE_FUNC const ReplicateReturnType replicate(Index factor) const; /** * \return an expression of the replication of each column (or row) of \c *this * * Example: \include DirectionWise_replicate.cpp * Output: \verbinclude DirectionWise_replicate.out * * \sa VectorwiseOp::replicate(Index), DenseBase::replicate(), class Replicate */ // NOTE implemented here because of sunstudio's compilation errors // isVertical*Factor+isHorizontal instead of (isVertical?Factor:1) to handle CUDA bug with ternary operator template<int Factor> const Replicate<ExpressionType,isVertical*Factor+isHorizontal,isHorizontal*Factor+isVertical> EIGEN_DEVICE_FUNC replicate(Index factor = Factor) const { return Replicate<ExpressionType,(isVertical?Factor:1),(isHorizontal?Factor:1)> (_expression(),isVertical?factor:1,isHorizontal?factor:1); } /////////// Artithmetic operators /////////// /** Copies the vector \a other to each subvector of \c *this */ template<typename OtherDerived> EIGEN_DEVICE_FUNC ExpressionType& operator=(const DenseBase<OtherDerived>& other) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) //eigen_assert((m_matrix.isNull()) == (other.isNull())); FIXME return const_cast<ExpressionType&>(m_matrix = extendedTo(other.derived())); } /** Adds the vector \a other to each subvector of \c *this */ template<typename OtherDerived> EIGEN_DEVICE_FUNC ExpressionType& operator+=(const DenseBase<OtherDerived>& other) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) return const_cast<ExpressionType&>(m_matrix += extendedTo(other.derived())); } /** Substracts the vector \a other to each subvector of \c *this */ template<typename OtherDerived> EIGEN_DEVICE_FUNC ExpressionType& operator-=(const DenseBase<OtherDerived>& other) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) return const_cast<ExpressionType&>(m_matrix -= extendedTo(other.derived())); } /** Multiples each subvector of \c *this by the vector \a other */ template<typename OtherDerived> EIGEN_DEVICE_FUNC ExpressionType& operator*=(const DenseBase<OtherDerived>& other) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) m_matrix *= extendedTo(other.derived()); return const_cast<ExpressionType&>(m_matrix); } /** Divides each subvector of \c *this by the vector \a other */ template<typename OtherDerived> EIGEN_DEVICE_FUNC ExpressionType& operator/=(const DenseBase<OtherDerived>& other) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) m_matrix /= extendedTo(other.derived()); return const_cast<ExpressionType&>(m_matrix); } /** Returns the expression of the sum of the vector \a other to each subvector of \c *this */ template<typename OtherDerived> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC CwiseBinaryOp<internal::scalar_sum_op<Scalar,typename OtherDerived::Scalar>, const ExpressionTypeNestedCleaned, const typename ExtendedType<OtherDerived>::Type> operator+(const DenseBase<OtherDerived>& other) const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) return m_matrix + extendedTo(other.derived()); } /** Returns the expression of the difference between each subvector of \c *this and the vector \a other */ template<typename OtherDerived> EIGEN_DEVICE_FUNC CwiseBinaryOp<internal::scalar_difference_op<Scalar,typename OtherDerived::Scalar>, const ExpressionTypeNestedCleaned, const typename ExtendedType<OtherDerived>::Type> operator-(const DenseBase<OtherDerived>& other) const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) return m_matrix - extendedTo(other.derived()); } /** Returns the expression where each subvector is the product of the vector \a other * by the corresponding subvector of \c *this */ template<typename OtherDerived> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC CwiseBinaryOp<internal::scalar_product_op<Scalar>, const ExpressionTypeNestedCleaned, const typename ExtendedType<OtherDerived>::Type> EIGEN_DEVICE_FUNC operator*(const DenseBase<OtherDerived>& other) const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) return m_matrix * extendedTo(other.derived()); } /** Returns the expression where each subvector is the quotient of the corresponding * subvector of \c *this by the vector \a other */ template<typename OtherDerived> EIGEN_DEVICE_FUNC CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const ExpressionTypeNestedCleaned, const typename ExtendedType<OtherDerived>::Type> operator/(const DenseBase<OtherDerived>& other) const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) return m_matrix / extendedTo(other.derived()); } /** \returns an expression where each column (or row) of the referenced matrix are normalized. * The referenced matrix is \b not modified. * \sa MatrixBase::normalized(), normalize() */ EIGEN_DEVICE_FUNC CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const ExpressionTypeNestedCleaned, const typename OppositeExtendedType<typename ReturnType<internal::member_norm,RealScalar>::Type>::Type> normalized() const { return m_matrix.cwiseQuotient(extendedToOpposite(this->norm())); } /** Normalize in-place each row or columns of the referenced matrix. * \sa MatrixBase::normalize(), normalized() */ EIGEN_DEVICE_FUNC void normalize() { m_matrix = this->normalized(); } EIGEN_DEVICE_FUNC inline void reverseInPlace(); /////////// Geometry module /////////// typedef Homogeneous<ExpressionType,Direction> HomogeneousReturnType; EIGEN_DEVICE_FUNC HomogeneousReturnType homogeneous() const; typedef typename ExpressionType::PlainObject CrossReturnType; template<typename OtherDerived> EIGEN_DEVICE_FUNC const CrossReturnType cross(const MatrixBase<OtherDerived>& other) const; enum { HNormalized_Size = Direction==Vertical ? internal::traits<ExpressionType>::RowsAtCompileTime : internal::traits<ExpressionType>::ColsAtCompileTime, HNormalized_SizeMinusOne = HNormalized_Size==Dynamic ? Dynamic : HNormalized_Size-1 }; typedef Block<const ExpressionType, Direction==Vertical ? int(HNormalized_SizeMinusOne) : int(internal::traits<ExpressionType>::RowsAtCompileTime), Direction==Horizontal ? int(HNormalized_SizeMinusOne) : int(internal::traits<ExpressionType>::ColsAtCompileTime)> HNormalized_Block; typedef Block<const ExpressionType, Direction==Vertical ? 1 : int(internal::traits<ExpressionType>::RowsAtCompileTime), Direction==Horizontal ? 1 : int(internal::traits<ExpressionType>::ColsAtCompileTime)> HNormalized_Factors; typedef CwiseBinaryOp<internal::scalar_quotient_op<typename internal::traits<ExpressionType>::Scalar>, const HNormalized_Block, const Replicate<HNormalized_Factors, Direction==Vertical ? HNormalized_SizeMinusOne : 1, Direction==Horizontal ? HNormalized_SizeMinusOne : 1> > HNormalizedReturnType; EIGEN_DEVICE_FUNC const HNormalizedReturnType hnormalized() const; protected: ExpressionTypeNested m_matrix; }; //const colwise moved to DenseBase.h due to CUDA compiler bug /** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations * * \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting */ template<typename Derived> inline typename DenseBase<Derived>::ColwiseReturnType DenseBase<Derived>::colwise() { return ColwiseReturnType(derived()); } //const rowwise moved to DenseBase.h due to CUDA compiler bug /** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations * * \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting */ template<typename Derived> inline typename DenseBase<Derived>::RowwiseReturnType DenseBase<Derived>::rowwise() { return RowwiseReturnType(derived()); } } // end namespace Eigen #endif // EIGEN_PARTIAL_REDUX_H