// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_TRIANGULARMATRIX_H #define EIGEN_TRIANGULARMATRIX_H namespace Eigen { namespace internal { template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval; } /** \class TriangularBase * \ingroup Core_Module * * \brief Base class for triangular part in a matrix */ template<typename Derived> class TriangularBase : public EigenBase<Derived> { public: enum { Mode = internal::traits<Derived>::Mode, RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime, MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime, SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime>::ret), /**< This is equal to the number of coefficients, i.e. the number of * rows times the number of columns, or to \a Dynamic if this is not * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime, internal::traits<Derived>::MaxColsAtCompileTime>::ret) }; typedef typename internal::traits<Derived>::Scalar Scalar; typedef typename internal::traits<Derived>::StorageKind StorageKind; typedef typename internal::traits<Derived>::StorageIndex StorageIndex; typedef typename internal::traits<Derived>::FullMatrixType DenseMatrixType; typedef DenseMatrixType DenseType; typedef Derived const& Nested; EIGEN_DEVICE_FUNC inline TriangularBase() { eigen_assert(!((Mode&UnitDiag) && (Mode&ZeroDiag))); } EIGEN_DEVICE_FUNC inline Index rows() const { return derived().rows(); } EIGEN_DEVICE_FUNC inline Index cols() const { return derived().cols(); } EIGEN_DEVICE_FUNC inline Index outerStride() const { return derived().outerStride(); } EIGEN_DEVICE_FUNC inline Index innerStride() const { return derived().innerStride(); } // dummy resize function void resize(Index rows, Index cols) { EIGEN_UNUSED_VARIABLE(rows); EIGEN_UNUSED_VARIABLE(cols); eigen_assert(rows==this->rows() && cols==this->cols()); } EIGEN_DEVICE_FUNC inline Scalar coeff(Index row, Index col) const { return derived().coeff(row,col); } EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); } /** \see MatrixBase::copyCoeff(row,col) */ template<typename Other> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other) { derived().coeffRef(row, col) = other.coeff(row, col); } EIGEN_DEVICE_FUNC inline Scalar operator()(Index row, Index col) const { check_coordinates(row, col); return coeff(row,col); } EIGEN_DEVICE_FUNC inline Scalar& operator()(Index row, Index col) { check_coordinates(row, col); return coeffRef(row,col); } #ifndef EIGEN_PARSED_BY_DOXYGEN EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast<const Derived*>(this); } EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast<Derived*>(this); } #endif // not EIGEN_PARSED_BY_DOXYGEN template<typename DenseDerived> EIGEN_DEVICE_FUNC void evalTo(MatrixBase<DenseDerived> &other) const; template<typename DenseDerived> EIGEN_DEVICE_FUNC void evalToLazy(MatrixBase<DenseDerived> &other) const; EIGEN_DEVICE_FUNC DenseMatrixType toDenseMatrix() const { DenseMatrixType res(rows(), cols()); evalToLazy(res); return res; } protected: void check_coordinates(Index row, Index col) const { EIGEN_ONLY_USED_FOR_DEBUG(row); EIGEN_ONLY_USED_FOR_DEBUG(col); eigen_assert(col>=0 && col<cols() && row>=0 && row<rows()); const int mode = int(Mode) & ~SelfAdjoint; EIGEN_ONLY_USED_FOR_DEBUG(mode); eigen_assert((mode==Upper && col>=row) || (mode==Lower && col<=row) || ((mode==StrictlyUpper || mode==UnitUpper) && col>row) || ((mode==StrictlyLower || mode==UnitLower) && col<row)); } #ifdef EIGEN_INTERNAL_DEBUGGING void check_coordinates_internal(Index row, Index col) const { check_coordinates(row, col); } #else void check_coordinates_internal(Index , Index ) const {} #endif }; /** \class TriangularView * \ingroup Core_Module * * \brief Expression of a triangular part in a matrix * * \param MatrixType the type of the object in which we are taking the triangular part * \param Mode the kind of triangular matrix expression to construct. Can be #Upper, * #Lower, #UnitUpper, #UnitLower, #StrictlyUpper, or #StrictlyLower. * This is in fact a bit field; it must have either #Upper or #Lower, * and additionally it may have #UnitDiag or #ZeroDiag or neither. * * This class represents a triangular part of a matrix, not necessarily square. Strictly speaking, for rectangular * matrices one should speak of "trapezoid" parts. This class is the return type * of MatrixBase::triangularView() and SparseMatrixBase::triangularView(), and most of the time this is the only way it is used. * * \sa MatrixBase::triangularView() */ namespace internal { template<typename MatrixType, unsigned int _Mode> struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType> { typedef typename ref_selector<MatrixType>::non_const_type MatrixTypeNested; typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef; typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned; typedef typename MatrixType::PlainObject FullMatrixType; typedef MatrixType ExpressionType; enum { Mode = _Mode, FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0, Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | FlagsLvalueBit) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) }; }; } template<typename _MatrixType, unsigned int _Mode, typename StorageKind> class TriangularViewImpl; template<typename _MatrixType, unsigned int _Mode> class TriangularView : public TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > { public: typedef TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > Base; typedef typename internal::traits<TriangularView>::Scalar Scalar; typedef _MatrixType MatrixType; protected: typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested; typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef; typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType; public: typedef typename internal::traits<TriangularView>::StorageKind StorageKind; typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned NestedExpression; enum { Mode = _Mode, Flags = internal::traits<TriangularView>::Flags, TransposeMode = (Mode & Upper ? Lower : 0) | (Mode & Lower ? Upper : 0) | (Mode & (UnitDiag)) | (Mode & (ZeroDiag)), IsVectorAtCompileTime = false }; EIGEN_DEVICE_FUNC explicit inline TriangularView(MatrixType& matrix) : m_matrix(matrix) {} using Base::operator=; TriangularView& operator=(const TriangularView &other) { return Base::operator=(other); } /** \copydoc EigenBase::rows() */ EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows(); } /** \copydoc EigenBase::cols() */ EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols(); } /** \returns a const reference to the nested expression */ EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; } /** \returns a reference to the nested expression */ EIGEN_DEVICE_FUNC NestedExpression& nestedExpression() { return m_matrix; } typedef TriangularView<const MatrixConjugateReturnType,Mode> ConjugateReturnType; /** \sa MatrixBase::conjugate() const */ EIGEN_DEVICE_FUNC inline const ConjugateReturnType conjugate() const { return ConjugateReturnType(m_matrix.conjugate()); } typedef TriangularView<const typename MatrixType::AdjointReturnType,TransposeMode> AdjointReturnType; /** \sa MatrixBase::adjoint() const */ EIGEN_DEVICE_FUNC inline const AdjointReturnType adjoint() const { return AdjointReturnType(m_matrix.adjoint()); } typedef TriangularView<typename MatrixType::TransposeReturnType,TransposeMode> TransposeReturnType; /** \sa MatrixBase::transpose() */ EIGEN_DEVICE_FUNC inline TransposeReturnType transpose() { EIGEN_STATIC_ASSERT_LVALUE(MatrixType) typename MatrixType::TransposeReturnType tmp(m_matrix); return TransposeReturnType(tmp); } typedef TriangularView<const typename MatrixType::ConstTransposeReturnType,TransposeMode> ConstTransposeReturnType; /** \sa MatrixBase::transpose() const */ EIGEN_DEVICE_FUNC inline const ConstTransposeReturnType transpose() const { return ConstTransposeReturnType(m_matrix.transpose()); } template<typename Other> EIGEN_DEVICE_FUNC inline const Solve<TriangularView, Other> solve(const MatrixBase<Other>& other) const { return Solve<TriangularView, Other>(*this, other.derived()); } // workaround MSVC ICE #if EIGEN_COMP_MSVC template<int Side, typename Other> EIGEN_DEVICE_FUNC inline const internal::triangular_solve_retval<Side,TriangularView, Other> solve(const MatrixBase<Other>& other) const { return Base::template solve<Side>(other); } #else using Base::solve; #endif /** \returns a selfadjoint view of the referenced triangular part which must be either \c #Upper or \c #Lower. * * This is a shortcut for \code this->nestedExpression().selfadjointView<(*this)::Mode>() \endcode * \sa MatrixBase::selfadjointView() */ EIGEN_DEVICE_FUNC SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() { EIGEN_STATIC_ASSERT((Mode&(UnitDiag|ZeroDiag))==0,PROGRAMMING_ERROR); return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix); } /** This is the const version of selfadjointView() */ EIGEN_DEVICE_FUNC const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const { EIGEN_STATIC_ASSERT((Mode&(UnitDiag|ZeroDiag))==0,PROGRAMMING_ERROR); return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix); } /** \returns the determinant of the triangular matrix * \sa MatrixBase::determinant() */ EIGEN_DEVICE_FUNC Scalar determinant() const { if (Mode & UnitDiag) return 1; else if (Mode & ZeroDiag) return 0; else return m_matrix.diagonal().prod(); } protected: MatrixTypeNested m_matrix; }; /** \ingroup Core_Module * * \brief Base class for a triangular part in a \b dense matrix * * This class is an abstract base class of class TriangularView, and objects of type TriangularViewImpl cannot be instantiated. * It extends class TriangularView with additional methods which available for dense expressions only. * * \sa class TriangularView, MatrixBase::triangularView() */ template<typename _MatrixType, unsigned int _Mode> class TriangularViewImpl<_MatrixType,_Mode,Dense> : public TriangularBase<TriangularView<_MatrixType, _Mode> > { public: typedef TriangularView<_MatrixType, _Mode> TriangularViewType; typedef TriangularBase<TriangularViewType> Base; typedef typename internal::traits<TriangularViewType>::Scalar Scalar; typedef _MatrixType MatrixType; typedef typename MatrixType::PlainObject DenseMatrixType; typedef DenseMatrixType PlainObject; public: using Base::evalToLazy; using Base::derived; typedef typename internal::traits<TriangularViewType>::StorageKind StorageKind; enum { Mode = _Mode, Flags = internal::traits<TriangularViewType>::Flags }; /** \returns the outer-stride of the underlying dense matrix * \sa DenseCoeffsBase::outerStride() */ EIGEN_DEVICE_FUNC inline Index outerStride() const { return derived().nestedExpression().outerStride(); } /** \returns the inner-stride of the underlying dense matrix * \sa DenseCoeffsBase::innerStride() */ EIGEN_DEVICE_FUNC inline Index innerStride() const { return derived().nestedExpression().innerStride(); } /** \sa MatrixBase::operator+=() */ template<typename Other> EIGEN_DEVICE_FUNC TriangularViewType& operator+=(const DenseBase<Other>& other) { internal::call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op<Scalar,typename Other::Scalar>()); return derived(); } /** \sa MatrixBase::operator-=() */ template<typename Other> EIGEN_DEVICE_FUNC TriangularViewType& operator-=(const DenseBase<Other>& other) { internal::call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op<Scalar,typename Other::Scalar>()); return derived(); } /** \sa MatrixBase::operator*=() */ EIGEN_DEVICE_FUNC TriangularViewType& operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = derived().nestedExpression() * other; } /** \sa DenseBase::operator/=() */ EIGEN_DEVICE_FUNC TriangularViewType& operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = derived().nestedExpression() / other; } /** \sa MatrixBase::fill() */ EIGEN_DEVICE_FUNC void fill(const Scalar& value) { setConstant(value); } /** \sa MatrixBase::setConstant() */ EIGEN_DEVICE_FUNC TriangularViewType& setConstant(const Scalar& value) { return *this = MatrixType::Constant(derived().rows(), derived().cols(), value); } /** \sa MatrixBase::setZero() */ EIGEN_DEVICE_FUNC TriangularViewType& setZero() { return setConstant(Scalar(0)); } /** \sa MatrixBase::setOnes() */ EIGEN_DEVICE_FUNC TriangularViewType& setOnes() { return setConstant(Scalar(1)); } /** \sa MatrixBase::coeff() * \warning the coordinates must fit into the referenced triangular part */ EIGEN_DEVICE_FUNC inline Scalar coeff(Index row, Index col) const { Base::check_coordinates_internal(row, col); return derived().nestedExpression().coeff(row, col); } /** \sa MatrixBase::coeffRef() * \warning the coordinates must fit into the referenced triangular part */ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col) { EIGEN_STATIC_ASSERT_LVALUE(TriangularViewType); Base::check_coordinates_internal(row, col); return derived().nestedExpression().coeffRef(row, col); } /** Assigns a triangular matrix to a triangular part of a dense matrix */ template<typename OtherDerived> EIGEN_DEVICE_FUNC TriangularViewType& operator=(const TriangularBase<OtherDerived>& other); /** Shortcut for\code *this = other.other.triangularView<(*this)::Mode>() \endcode */ template<typename OtherDerived> EIGEN_DEVICE_FUNC TriangularViewType& operator=(const MatrixBase<OtherDerived>& other); #ifndef EIGEN_PARSED_BY_DOXYGEN EIGEN_DEVICE_FUNC TriangularViewType& operator=(const TriangularViewImpl& other) { return *this = other.derived().nestedExpression(); } /** \deprecated */ template<typename OtherDerived> EIGEN_DEVICE_FUNC void lazyAssign(const TriangularBase<OtherDerived>& other); /** \deprecated */ template<typename OtherDerived> EIGEN_DEVICE_FUNC void lazyAssign(const MatrixBase<OtherDerived>& other); #endif /** Efficient triangular matrix times vector/matrix product */ template<typename OtherDerived> EIGEN_DEVICE_FUNC const Product<TriangularViewType,OtherDerived> operator*(const MatrixBase<OtherDerived>& rhs) const { return Product<TriangularViewType,OtherDerived>(derived(), rhs.derived()); } /** Efficient vector/matrix times triangular matrix product */ template<typename OtherDerived> friend EIGEN_DEVICE_FUNC const Product<OtherDerived,TriangularViewType> operator*(const MatrixBase<OtherDerived>& lhs, const TriangularViewImpl& rhs) { return Product<OtherDerived,TriangularViewType>(lhs.derived(),rhs.derived()); } /** \returns the product of the inverse of \c *this with \a other, \a *this being triangular. * * This function computes the inverse-matrix matrix product inverse(\c *this) * \a other if * \a Side==OnTheLeft (the default), or the right-inverse-multiply \a other * inverse(\c *this) if * \a Side==OnTheRight. * * Note that the template parameter \c Side can be ommitted, in which case \c Side==OnTheLeft * * The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the * diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this * is an upper (resp. lower) triangular matrix. * * Example: \include Triangular_solve.cpp * Output: \verbinclude Triangular_solve.out * * This function returns an expression of the inverse-multiply and can works in-place if it is assigned * to the same matrix or vector \a other. * * For users coming from BLAS, this function (and more specifically solveInPlace()) offer * all the operations supported by the \c *TRSV and \c *TRSM BLAS routines. * * \sa TriangularView::solveInPlace() */ template<int Side, typename Other> EIGEN_DEVICE_FUNC inline const internal::triangular_solve_retval<Side,TriangularViewType, Other> solve(const MatrixBase<Other>& other) const; /** "in-place" version of TriangularView::solve() where the result is written in \a other * * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. * This function will const_cast it, so constness isn't honored here. * * Note that the template parameter \c Side can be ommitted, in which case \c Side==OnTheLeft * * See TriangularView:solve() for the details. */ template<int Side, typename OtherDerived> EIGEN_DEVICE_FUNC void solveInPlace(const MatrixBase<OtherDerived>& other) const; template<typename OtherDerived> EIGEN_DEVICE_FUNC void solveInPlace(const MatrixBase<OtherDerived>& other) const { return solveInPlace<OnTheLeft>(other); } /** Swaps the coefficients of the common triangular parts of two matrices */ template<typename OtherDerived> EIGEN_DEVICE_FUNC #ifdef EIGEN_PARSED_BY_DOXYGEN void swap(TriangularBase<OtherDerived> &other) #else void swap(TriangularBase<OtherDerived> const & other) #endif { EIGEN_STATIC_ASSERT_LVALUE(OtherDerived); call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>()); } /** \deprecated * Shortcut for \code (*this).swap(other.triangularView<(*this)::Mode>()) \endcode */ template<typename OtherDerived> EIGEN_DEVICE_FUNC void swap(MatrixBase<OtherDerived> const & other) { EIGEN_STATIC_ASSERT_LVALUE(OtherDerived); call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>()); } template<typename RhsType, typename DstType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const { if(!internal::is_same_dense(dst,rhs)) dst = rhs; this->solveInPlace(dst); } template<typename ProductType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TriangularViewType& _assignProduct(const ProductType& prod, const Scalar& alpha, bool beta); }; /*************************************************************************** * Implementation of triangular evaluation/assignment ***************************************************************************/ #ifndef EIGEN_PARSED_BY_DOXYGEN // FIXME should we keep that possibility template<typename MatrixType, unsigned int Mode> template<typename OtherDerived> inline TriangularView<MatrixType, Mode>& TriangularViewImpl<MatrixType, Mode, Dense>::operator=(const MatrixBase<OtherDerived>& other) { internal::call_assignment_no_alias(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>()); return derived(); } // FIXME should we keep that possibility template<typename MatrixType, unsigned int Mode> template<typename OtherDerived> void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(const MatrixBase<OtherDerived>& other) { internal::call_assignment_no_alias(derived(), other.template triangularView<Mode>()); } template<typename MatrixType, unsigned int Mode> template<typename OtherDerived> inline TriangularView<MatrixType, Mode>& TriangularViewImpl<MatrixType, Mode, Dense>::operator=(const TriangularBase<OtherDerived>& other) { eigen_assert(Mode == int(OtherDerived::Mode)); internal::call_assignment(derived(), other.derived()); return derived(); } template<typename MatrixType, unsigned int Mode> template<typename OtherDerived> void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(const TriangularBase<OtherDerived>& other) { eigen_assert(Mode == int(OtherDerived::Mode)); internal::call_assignment_no_alias(derived(), other.derived()); } #endif /*************************************************************************** * Implementation of TriangularBase methods ***************************************************************************/ /** Assigns a triangular or selfadjoint matrix to a dense matrix. * If the matrix is triangular, the opposite part is set to zero. */ template<typename Derived> template<typename DenseDerived> void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const { evalToLazy(other.derived()); } /*************************************************************************** * Implementation of TriangularView methods ***************************************************************************/ /*************************************************************************** * Implementation of MatrixBase methods ***************************************************************************/ /** * \returns an expression of a triangular view extracted from the current matrix * * The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper, * \c #Lower, \c #StrictlyLower, \c #UnitLower. * * Example: \include MatrixBase_triangularView.cpp * Output: \verbinclude MatrixBase_triangularView.out * * \sa class TriangularView */ template<typename Derived> template<unsigned int Mode> typename MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type MatrixBase<Derived>::triangularView() { return typename TriangularViewReturnType<Mode>::Type(derived()); } /** This is the const version of MatrixBase::triangularView() */ template<typename Derived> template<unsigned int Mode> typename MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type MatrixBase<Derived>::triangularView() const { return typename ConstTriangularViewReturnType<Mode>::Type(derived()); } /** \returns true if *this is approximately equal to an upper triangular matrix, * within the precision given by \a prec. * * \sa isLowerTriangular() */ template<typename Derived> bool MatrixBase<Derived>::isUpperTriangular(const RealScalar& prec) const { RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1); for(Index j = 0; j < cols(); ++j) { Index maxi = numext::mini(j, rows()-1); for(Index i = 0; i <= maxi; ++i) { RealScalar absValue = numext::abs(coeff(i,j)); if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue; } } RealScalar threshold = maxAbsOnUpperPart * prec; for(Index j = 0; j < cols(); ++j) for(Index i = j+1; i < rows(); ++i) if(numext::abs(coeff(i, j)) > threshold) return false; return true; } /** \returns true if *this is approximately equal to a lower triangular matrix, * within the precision given by \a prec. * * \sa isUpperTriangular() */ template<typename Derived> bool MatrixBase<Derived>::isLowerTriangular(const RealScalar& prec) const { RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1); for(Index j = 0; j < cols(); ++j) for(Index i = j; i < rows(); ++i) { RealScalar absValue = numext::abs(coeff(i,j)); if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue; } RealScalar threshold = maxAbsOnLowerPart * prec; for(Index j = 1; j < cols(); ++j) { Index maxi = numext::mini(j, rows()-1); for(Index i = 0; i < maxi; ++i) if(numext::abs(coeff(i, j)) > threshold) return false; } return true; } /*************************************************************************** **************************************************************************** * Evaluators and Assignment of triangular expressions *************************************************************************** ***************************************************************************/ namespace internal { // TODO currently a triangular expression has the form TriangularView<.,.> // in the future triangular-ness should be defined by the expression traits // such that Transpose<TriangularView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work) template<typename MatrixType, unsigned int Mode> struct evaluator_traits<TriangularView<MatrixType,Mode> > { typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind; typedef typename glue_shapes<typename evaluator_traits<MatrixType>::Shape, TriangularShape>::type Shape; }; template<typename MatrixType, unsigned int Mode> struct unary_evaluator<TriangularView<MatrixType,Mode>, IndexBased> : evaluator<typename internal::remove_all<MatrixType>::type> { typedef TriangularView<MatrixType,Mode> XprType; typedef evaluator<typename internal::remove_all<MatrixType>::type> Base; unary_evaluator(const XprType &xpr) : Base(xpr.nestedExpression()) {} }; // Additional assignment kinds: struct Triangular2Triangular {}; struct Triangular2Dense {}; struct Dense2Triangular {}; template<typename Kernel, unsigned int Mode, int UnrollCount, bool ClearOpposite> struct triangular_assignment_loop; /** \internal Specialization of the dense assignment kernel for triangular matrices. * The main difference is that the triangular, diagonal, and opposite parts are processed through three different functions. * \tparam UpLo must be either Lower or Upper * \tparam Mode must be either 0, UnitDiag, ZeroDiag, or SelfAdjoint */ template<int UpLo, int Mode, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized> class triangular_dense_assignment_kernel : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> { protected: typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base; typedef typename Base::DstXprType DstXprType; typedef typename Base::SrcXprType SrcXprType; using Base::m_dst; using Base::m_src; using Base::m_functor; public: typedef typename Base::DstEvaluatorType DstEvaluatorType; typedef typename Base::SrcEvaluatorType SrcEvaluatorType; typedef typename Base::Scalar Scalar; typedef typename Base::AssignmentTraits AssignmentTraits; EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr) : Base(dst, src, func, dstExpr) {} #ifdef EIGEN_INTERNAL_DEBUGGING EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col) { eigen_internal_assert(row!=col); Base::assignCoeff(row,col); } #else using Base::assignCoeff; #endif EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id) { if(Mode==UnitDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(1)); else if(Mode==ZeroDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(0)); else if(Mode==0) Base::assignCoeff(id,id); } EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index row, Index col) { eigen_internal_assert(row!=col); if(SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(row,col), Scalar(0)); } }; template<int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType, typename Functor> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func) { typedef evaluator<DstXprType> DstEvaluatorType; typedef evaluator<SrcXprType> SrcEvaluatorType; SrcEvaluatorType srcEvaluator(src); Index dstRows = src.rows(); Index dstCols = src.cols(); if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) dst.resize(dstRows, dstCols); DstEvaluatorType dstEvaluator(dst); typedef triangular_dense_assignment_kernel< Mode&(Lower|Upper),Mode&(UnitDiag|ZeroDiag|SelfAdjoint),SetOpposite, DstEvaluatorType,SrcEvaluatorType,Functor> Kernel; Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived()); enum { unroll = DstXprType::SizeAtCompileTime != Dynamic && SrcEvaluatorType::CoeffReadCost < HugeCost && DstXprType::SizeAtCompileTime * (DstEvaluatorType::CoeffReadCost+SrcEvaluatorType::CoeffReadCost) / 2 <= EIGEN_UNROLLING_LIMIT }; triangular_assignment_loop<Kernel, Mode, unroll ? int(DstXprType::SizeAtCompileTime) : Dynamic, SetOpposite>::run(kernel); } template<int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src) { call_triangular_assignment_loop<Mode,SetOpposite>(dst, src, internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>()); } template<> struct AssignmentKind<TriangularShape,TriangularShape> { typedef Triangular2Triangular Kind; }; template<> struct AssignmentKind<DenseShape,TriangularShape> { typedef Triangular2Dense Kind; }; template<> struct AssignmentKind<TriangularShape,DenseShape> { typedef Dense2Triangular Kind; }; template< typename DstXprType, typename SrcXprType, typename Functor> struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Triangular> { EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) { eigen_assert(int(DstXprType::Mode) == int(SrcXprType::Mode)); call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func); } }; template< typename DstXprType, typename SrcXprType, typename Functor> struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Dense> { EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) { call_triangular_assignment_loop<SrcXprType::Mode, (SrcXprType::Mode&SelfAdjoint)==0>(dst, src, func); } }; template< typename DstXprType, typename SrcXprType, typename Functor> struct Assignment<DstXprType, SrcXprType, Functor, Dense2Triangular> { EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) { call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func); } }; template<typename Kernel, unsigned int Mode, int UnrollCount, bool SetOpposite> struct triangular_assignment_loop { // FIXME: this is not very clean, perhaps this information should be provided by the kernel? typedef typename Kernel::DstEvaluatorType DstEvaluatorType; typedef typename DstEvaluatorType::XprType DstXprType; enum { col = (UnrollCount-1) / DstXprType::RowsAtCompileTime, row = (UnrollCount-1) % DstXprType::RowsAtCompileTime }; typedef typename Kernel::Scalar Scalar; EIGEN_DEVICE_FUNC static inline void run(Kernel &kernel) { triangular_assignment_loop<Kernel, Mode, UnrollCount-1, SetOpposite>::run(kernel); if(row==col) kernel.assignDiagonalCoeff(row); else if( ((Mode&Lower) && row>col) || ((Mode&Upper) && row<col) ) kernel.assignCoeff(row,col); else if(SetOpposite) kernel.assignOppositeCoeff(row,col); } }; // prevent buggy user code from causing an infinite recursion template<typename Kernel, unsigned int Mode, bool SetOpposite> struct triangular_assignment_loop<Kernel, Mode, 0, SetOpposite> { EIGEN_DEVICE_FUNC static inline void run(Kernel &) {} }; // TODO: experiment with a recursive assignment procedure splitting the current // triangular part into one rectangular and two triangular parts. template<typename Kernel, unsigned int Mode, bool SetOpposite> struct triangular_assignment_loop<Kernel, Mode, Dynamic, SetOpposite> { typedef typename Kernel::Scalar Scalar; EIGEN_DEVICE_FUNC static inline void run(Kernel &kernel) { for(Index j = 0; j < kernel.cols(); ++j) { Index maxi = numext::mini(j, kernel.rows()); Index i = 0; if (((Mode&Lower) && SetOpposite) || (Mode&Upper)) { for(; i < maxi; ++i) if(Mode&Upper) kernel.assignCoeff(i, j); else kernel.assignOppositeCoeff(i, j); } else i = maxi; if(i<kernel.rows()) // then i==j kernel.assignDiagonalCoeff(i++); if (((Mode&Upper) && SetOpposite) || (Mode&Lower)) { for(; i < kernel.rows(); ++i) if(Mode&Lower) kernel.assignCoeff(i, j); else kernel.assignOppositeCoeff(i, j); } } } }; } // end namespace internal /** Assigns a triangular or selfadjoint matrix to a dense matrix. * If the matrix is triangular, the opposite part is set to zero. */ template<typename Derived> template<typename DenseDerived> void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const { other.derived().resize(this->rows(), this->cols()); internal::call_triangular_assignment_loop<Derived::Mode,(Derived::Mode&SelfAdjoint)==0 /* SetOpposite */>(other.derived(), derived().nestedExpression()); } namespace internal { // Triangular = Product template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::assign_op<Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, Dense2Triangular> { typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType; static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename SrcXprType::Scalar> &) { Index dstRows = src.rows(); Index dstCols = src.cols(); if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) dst.resize(dstRows, dstCols); dst._assignProduct(src, 1, 0); } }; // Triangular += Product template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::add_assign_op<Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, Dense2Triangular> { typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType; static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar,typename SrcXprType::Scalar> &) { dst._assignProduct(src, 1, 1); } }; // Triangular -= Product template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::sub_assign_op<Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, Dense2Triangular> { typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType; static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar,typename SrcXprType::Scalar> &) { dst._assignProduct(src, -1, 1); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_TRIANGULARMATRIX_H