// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SOLVERBASE_H #define EIGEN_SOLVERBASE_H namespace Eigen { namespace internal { } // end namespace internal /** \class SolverBase * \brief A base class for matrix decomposition and solvers * * \tparam Derived the actual type of the decomposition/solver. * * Any matrix decomposition inheriting this base class provide the following API: * * \code * MatrixType A, b, x; * DecompositionType dec(A); * x = dec.solve(b); // solve A * x = b * x = dec.transpose().solve(b); // solve A^T * x = b * x = dec.adjoint().solve(b); // solve A' * x = b * \endcode * * \warning Currently, any other usage of transpose() and adjoint() are not supported and will produce compilation errors. * * \sa class PartialPivLU, class FullPivLU */ template<typename Derived> class SolverBase : public EigenBase<Derived> { public: typedef EigenBase<Derived> Base; typedef typename internal::traits<Derived>::Scalar Scalar; typedef Scalar CoeffReturnType; enum { RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime>::ret), MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime, MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime, MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime, internal::traits<Derived>::MaxColsAtCompileTime>::ret), IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1 || internal::traits<Derived>::MaxColsAtCompileTime == 1 }; /** Default constructor */ SolverBase() {} ~SolverBase() {} using Base::derived; /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A. */ template<typename Rhs> inline const Solve<Derived, Rhs> solve(const MatrixBase<Rhs>& b) const { eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b"); return Solve<Derived, Rhs>(derived(), b.derived()); } /** \internal the return type of transpose() */ typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType; /** \returns an expression of the transposed of the factored matrix. * * A typical usage is to solve for the transposed problem A^T x = b: * \code x = dec.transpose().solve(b); \endcode * * \sa adjoint(), solve() */ inline ConstTransposeReturnType transpose() const { return ConstTransposeReturnType(derived()); } /** \internal the return type of adjoint() */ typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>, ConstTransposeReturnType >::type AdjointReturnType; /** \returns an expression of the adjoint of the factored matrix * * A typical usage is to solve for the adjoint problem A' x = b: * \code x = dec.adjoint().solve(b); \endcode * * For real scalar types, this function is equivalent to transpose(). * * \sa transpose(), solve() */ inline AdjointReturnType adjoint() const { return AdjointReturnType(derived().transpose()); } protected: }; namespace internal { template<typename Derived> struct generic_xpr_base<Derived, MatrixXpr, SolverStorage> { typedef SolverBase<Derived> type; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_SOLVERBASE_H