// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SELFADJOINTMATRIX_H #define EIGEN_SELFADJOINTMATRIX_H namespace Eigen { /** \class SelfAdjointView * \ingroup Core_Module * * * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix * * \param MatrixType the type of the dense matrix storing the coefficients * \param TriangularPart can be either \c #Lower or \c #Upper * * This class is an expression of a sefladjoint matrix from a triangular part of a matrix * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() * and most of the time this is the only way that it is used. * * \sa class TriangularBase, MatrixBase::selfadjointView() */ namespace internal { template<typename MatrixType, unsigned int UpLo> struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType> { typedef typename ref_selector<MatrixType>::non_const_type MatrixTypeNested; typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned; typedef MatrixType ExpressionType; typedef typename MatrixType::PlainObject FullMatrixType; enum { Mode = UpLo | SelfAdjoint, FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0, Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits|FlagsLvalueBit) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)) // FIXME these flags should be preserved }; }; } template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView : public TriangularBase<SelfAdjointView<_MatrixType, UpLo> > { public: typedef _MatrixType MatrixType; typedef TriangularBase<SelfAdjointView> Base; typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested; typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned; typedef MatrixTypeNestedCleaned NestedExpression; /** \brief The type of coefficients in this matrix */ typedef typename internal::traits<SelfAdjointView>::Scalar Scalar; typedef typename MatrixType::StorageIndex StorageIndex; typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType; enum { Mode = internal::traits<SelfAdjointView>::Mode, Flags = internal::traits<SelfAdjointView>::Flags, TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0) }; typedef typename MatrixType::PlainObject PlainObject; EIGEN_DEVICE_FUNC explicit inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix) {} EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows(); } EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols(); } EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_matrix.outerStride(); } EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_matrix.innerStride(); } /** \sa MatrixBase::coeff() * \warning the coordinates must fit into the referenced triangular part */ EIGEN_DEVICE_FUNC inline Scalar coeff(Index row, Index col) const { Base::check_coordinates_internal(row, col); return m_matrix.coeff(row, col); } /** \sa MatrixBase::coeffRef() * \warning the coordinates must fit into the referenced triangular part */ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col) { EIGEN_STATIC_ASSERT_LVALUE(SelfAdjointView); Base::check_coordinates_internal(row, col); return m_matrix.coeffRef(row, col); } /** \internal */ EIGEN_DEVICE_FUNC const MatrixTypeNestedCleaned& _expression() const { return m_matrix; } EIGEN_DEVICE_FUNC const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; } EIGEN_DEVICE_FUNC MatrixTypeNestedCleaned& nestedExpression() { return m_matrix; } /** Efficient triangular matrix times vector/matrix product */ template<typename OtherDerived> EIGEN_DEVICE_FUNC const Product<SelfAdjointView,OtherDerived> operator*(const MatrixBase<OtherDerived>& rhs) const { return Product<SelfAdjointView,OtherDerived>(*this, rhs.derived()); } /** Efficient vector/matrix times triangular matrix product */ template<typename OtherDerived> friend EIGEN_DEVICE_FUNC const Product<OtherDerived,SelfAdjointView> operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs) { return Product<OtherDerived,SelfAdjointView>(lhs.derived(),rhs); } friend EIGEN_DEVICE_FUNC const SelfAdjointView<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,MatrixType,product),UpLo> operator*(const Scalar& s, const SelfAdjointView& mat) { return (s*mat.nestedExpression()).template selfadjointView<UpLo>(); } /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this: * \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$ * \returns a reference to \c *this * * The vectors \a u and \c v \b must be column vectors, however they can be * a adjoint expression without any overhead. Only the meaningful triangular * part of the matrix is updated, the rest is left unchanged. * * \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar) */ template<typename DerivedU, typename DerivedV> EIGEN_DEVICE_FUNC SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, const Scalar& alpha = Scalar(1)); /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. * * \returns a reference to \c *this * * Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply * call this function with u.adjoint(). * * \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar) */ template<typename DerivedU> EIGEN_DEVICE_FUNC SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1)); /** \returns an expression of a triangular view extracted from the current selfadjoint view of a given triangular part * * The parameter \a TriMode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper, * \c #Lower, \c #StrictlyLower, \c #UnitLower. * * If \c TriMode references the same triangular part than \c *this, then this method simply return a \c TriangularView of the nested expression, * otherwise, the nested expression is first transposed, thus returning a \c TriangularView<Transpose<MatrixType>> object. * * \sa MatrixBase::triangularView(), class TriangularView */ template<unsigned int TriMode> EIGEN_DEVICE_FUNC typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), TriangularView<MatrixType,TriMode>, TriangularView<typename MatrixType::AdjointReturnType,TriMode> >::type triangularView() const { typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::ConstTransposeReturnType>::type tmp1(m_matrix); typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::AdjointReturnType>::type tmp2(tmp1); return typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), TriangularView<MatrixType,TriMode>, TriangularView<typename MatrixType::AdjointReturnType,TriMode> >::type(tmp2); } typedef SelfAdjointView<const MatrixConjugateReturnType,Mode> ConjugateReturnType; /** \sa MatrixBase::conjugate() const */ EIGEN_DEVICE_FUNC inline const ConjugateReturnType conjugate() const { return ConjugateReturnType(m_matrix.conjugate()); } typedef SelfAdjointView<const typename MatrixType::AdjointReturnType,TransposeMode> AdjointReturnType; /** \sa MatrixBase::adjoint() const */ EIGEN_DEVICE_FUNC inline const AdjointReturnType adjoint() const { return AdjointReturnType(m_matrix.adjoint()); } typedef SelfAdjointView<typename MatrixType::TransposeReturnType,TransposeMode> TransposeReturnType; /** \sa MatrixBase::transpose() */ EIGEN_DEVICE_FUNC inline TransposeReturnType transpose() { EIGEN_STATIC_ASSERT_LVALUE(MatrixType) typename MatrixType::TransposeReturnType tmp(m_matrix); return TransposeReturnType(tmp); } typedef SelfAdjointView<const typename MatrixType::ConstTransposeReturnType,TransposeMode> ConstTransposeReturnType; /** \sa MatrixBase::transpose() const */ EIGEN_DEVICE_FUNC inline const ConstTransposeReturnType transpose() const { return ConstTransposeReturnType(m_matrix.transpose()); } /** \returns a const expression of the main diagonal of the matrix \c *this * * This method simply returns the diagonal of the nested expression, thus by-passing the SelfAdjointView decorator. * * \sa MatrixBase::diagonal(), class Diagonal */ EIGEN_DEVICE_FUNC typename MatrixType::ConstDiagonalReturnType diagonal() const { return typename MatrixType::ConstDiagonalReturnType(m_matrix); } /////////// Cholesky module /////////// const LLT<PlainObject, UpLo> llt() const; const LDLT<PlainObject, UpLo> ldlt() const; /////////// Eigenvalue module /////////// /** Real part of #Scalar */ typedef typename NumTraits<Scalar>::Real RealScalar; /** Return type of eigenvalues() */ typedef Matrix<RealScalar, internal::traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType; EIGEN_DEVICE_FUNC EigenvaluesReturnType eigenvalues() const; EIGEN_DEVICE_FUNC RealScalar operatorNorm() const; protected: MatrixTypeNested m_matrix; }; // template<typename OtherDerived, typename MatrixType, unsigned int UpLo> // internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> > // operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs) // { // return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs); // } // selfadjoint to dense matrix namespace internal { // TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> // in the future selfadjoint-ness should be defined by the expression traits // such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work) template<typename MatrixType, unsigned int Mode> struct evaluator_traits<SelfAdjointView<MatrixType,Mode> > { typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind; typedef SelfAdjointShape Shape; }; template<int UpLo, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version> class triangular_dense_assignment_kernel<UpLo,SelfAdjoint,SetOpposite,DstEvaluatorTypeT,SrcEvaluatorTypeT,Functor,Version> : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> { protected: typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base; typedef typename Base::DstXprType DstXprType; typedef typename Base::SrcXprType SrcXprType; using Base::m_dst; using Base::m_src; using Base::m_functor; public: typedef typename Base::DstEvaluatorType DstEvaluatorType; typedef typename Base::SrcEvaluatorType SrcEvaluatorType; typedef typename Base::Scalar Scalar; typedef typename Base::AssignmentTraits AssignmentTraits; EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr) : Base(dst, src, func, dstExpr) {} EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col) { eigen_internal_assert(row!=col); Scalar tmp = m_src.coeff(row,col); m_functor.assignCoeff(m_dst.coeffRef(row,col), tmp); m_functor.assignCoeff(m_dst.coeffRef(col,row), numext::conj(tmp)); } EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id) { Base::assignCoeff(id,id); } EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index, Index) { eigen_internal_assert(false && "should never be called"); } }; } // end namespace internal /*************************************************************************** * Implementation of MatrixBase methods ***************************************************************************/ /** This is the const version of MatrixBase::selfadjointView() */ template<typename Derived> template<unsigned int UpLo> typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type MatrixBase<Derived>::selfadjointView() const { return typename ConstSelfAdjointViewReturnType<UpLo>::Type(derived()); } /** \returns an expression of a symmetric/self-adjoint view extracted from the upper or lower triangular part of the current matrix * * The parameter \a UpLo can be either \c #Upper or \c #Lower * * Example: \include MatrixBase_selfadjointView.cpp * Output: \verbinclude MatrixBase_selfadjointView.out * * \sa class SelfAdjointView */ template<typename Derived> template<unsigned int UpLo> typename MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type MatrixBase<Derived>::selfadjointView() { return typename SelfAdjointViewReturnType<UpLo>::Type(derived()); } } // end namespace Eigen #endif // EIGEN_SELFADJOINTMATRIX_H