// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_DENSESTORAGEBASE_H #define EIGEN_DENSESTORAGEBASE_H #if defined(EIGEN_INITIALIZE_MATRICES_BY_ZERO) # define EIGEN_INITIALIZE_COEFFS # define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0); #elif defined(EIGEN_INITIALIZE_MATRICES_BY_NAN) # define EIGEN_INITIALIZE_COEFFS # define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=std::numeric_limits<Scalar>::quiet_NaN(); #else # undef EIGEN_INITIALIZE_COEFFS # define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED #endif namespace Eigen { namespace internal { template<int MaxSizeAtCompileTime> struct check_rows_cols_for_overflow { template<typename Index> EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE void run(Index, Index) { } }; template<> struct check_rows_cols_for_overflow<Dynamic> { template<typename Index> EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols) { // http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242 // we assume Index is signed Index max_index = (std::size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed bool error = (rows == 0 || cols == 0) ? false : (rows > max_index / cols); if (error) throw_std_bad_alloc(); } }; template <typename Derived, typename OtherDerived = Derived, bool IsVector = bool(Derived::IsVectorAtCompileTime) && bool(OtherDerived::IsVectorAtCompileTime)> struct conservative_resize_like_impl; template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl; } // end namespace internal #ifdef EIGEN_PARSED_BY_DOXYGEN namespace doxygen { // This is a workaround to doxygen not being able to understand the inheritance logic // when it is hidden by the dense_xpr_base helper struct. // Moreover, doxygen fails to include members that are not documented in the declaration body of // MatrixBase if we inherits MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >, // this is why we simply inherits MatrixBase, though this does not make sense. /** This class is just a workaround for Doxygen and it does not not actually exist. */ template<typename Derived> struct dense_xpr_base_dispatcher; /** This class is just a workaround for Doxygen and it does not not actually exist. */ template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> struct dense_xpr_base_dispatcher<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : public MatrixBase {}; /** This class is just a workaround for Doxygen and it does not not actually exist. */ template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> struct dense_xpr_base_dispatcher<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : public ArrayBase {}; } // namespace doxygen /** \class PlainObjectBase * \ingroup Core_Module * \brief %Dense storage base class for matrices and arrays. * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN. * * \tparam Derived is the derived type, e.g., a Matrix or Array * * \sa \ref TopicClassHierarchy */ template<typename Derived> class PlainObjectBase : public doxygen::dense_xpr_base_dispatcher<Derived> #else template<typename Derived> class PlainObjectBase : public internal::dense_xpr_base<Derived>::type #endif { public: enum { Options = internal::traits<Derived>::Options }; typedef typename internal::dense_xpr_base<Derived>::type Base; typedef typename internal::traits<Derived>::StorageKind StorageKind; typedef typename internal::traits<Derived>::Scalar Scalar; typedef typename internal::packet_traits<Scalar>::type PacketScalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Derived DenseType; using Base::RowsAtCompileTime; using Base::ColsAtCompileTime; using Base::SizeAtCompileTime; using Base::MaxRowsAtCompileTime; using Base::MaxColsAtCompileTime; using Base::MaxSizeAtCompileTime; using Base::IsVectorAtCompileTime; using Base::Flags; template<typename PlainObjectType, int MapOptions, typename StrideType> friend class Eigen::Map; friend class Eigen::Map<Derived, Unaligned>; typedef Eigen::Map<Derived, Unaligned> MapType; friend class Eigen::Map<const Derived, Unaligned>; typedef const Eigen::Map<const Derived, Unaligned> ConstMapType; #if EIGEN_MAX_ALIGN_BYTES>0 // for EIGEN_MAX_ALIGN_BYTES==0, AlignedMax==Unaligned, and many compilers generate warnings for friend-ing a class twice. friend class Eigen::Map<Derived, AlignedMax>; friend class Eigen::Map<const Derived, AlignedMax>; #endif typedef Eigen::Map<Derived, AlignedMax> AlignedMapType; typedef const Eigen::Map<const Derived, AlignedMax> ConstAlignedMapType; template<typename StrideType> struct StridedMapType { typedef Eigen::Map<Derived, Unaligned, StrideType> type; }; template<typename StrideType> struct StridedConstMapType { typedef Eigen::Map<const Derived, Unaligned, StrideType> type; }; template<typename StrideType> struct StridedAlignedMapType { typedef Eigen::Map<Derived, AlignedMax, StrideType> type; }; template<typename StrideType> struct StridedConstAlignedMapType { typedef Eigen::Map<const Derived, AlignedMax, StrideType> type; }; protected: DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage; public: enum { NeedsToAlign = (SizeAtCompileTime != Dynamic) && (internal::traits<Derived>::Alignment>0) }; EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) EIGEN_DEVICE_FUNC Base& base() { return *static_cast<Base*>(this); } EIGEN_DEVICE_FUNC const Base& base() const { return *static_cast<const Base*>(this); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); } /** This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index,Index) const * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. * * See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index rowId, Index colId) const { if(Flags & RowMajorBit) return m_storage.data()[colId + rowId * m_storage.cols()]; else // column-major return m_storage.data()[rowId + colId * m_storage.rows()]; } /** This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. * * See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const { return m_storage.data()[index]; } /** This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. * * See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const for details. */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index rowId, Index colId) { if(Flags & RowMajorBit) return m_storage.data()[colId + rowId * m_storage.cols()]; else // column-major return m_storage.data()[rowId + colId * m_storage.rows()]; } /** This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts. * * See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const for details. */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { return m_storage.data()[index]; } /** This is the const version of coeffRef(Index,Index) which is thus synonym of coeff(Index,Index). * It is provided for convenience. */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const { if(Flags & RowMajorBit) return m_storage.data()[colId + rowId * m_storage.cols()]; else // column-major return m_storage.data()[rowId + colId * m_storage.rows()]; } /** This is the const version of coeffRef(Index) which is thus synonym of coeff(Index). * It is provided for convenience. */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const { return m_storage.data()[index]; } /** \internal */ template<int LoadMode> EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const { return internal::ploadt<PacketScalar, LoadMode> (m_storage.data() + (Flags & RowMajorBit ? colId + rowId * m_storage.cols() : rowId + colId * m_storage.rows())); } /** \internal */ template<int LoadMode> EIGEN_STRONG_INLINE PacketScalar packet(Index index) const { return internal::ploadt<PacketScalar, LoadMode>(m_storage.data() + index); } /** \internal */ template<int StoreMode> EIGEN_STRONG_INLINE void writePacket(Index rowId, Index colId, const PacketScalar& val) { internal::pstoret<Scalar, PacketScalar, StoreMode> (m_storage.data() + (Flags & RowMajorBit ? colId + rowId * m_storage.cols() : rowId + colId * m_storage.rows()), val); } /** \internal */ template<int StoreMode> EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& val) { internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, val); } /** \returns a const pointer to the data array of this matrix */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); } /** \returns a pointer to the data array of this matrix */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); } /** Resizes \c *this to a \a rows x \a cols matrix. * * This method is intended for dynamic-size matrices, although it is legal to call it on any * matrix as long as fixed dimensions are left unchanged. If you only want to change the number * of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t). * * If the current number of coefficients of \c *this exactly matches the * product \a rows * \a cols, then no memory allocation is performed and * the current values are left unchanged. In all other cases, including * shrinking, the data is reallocated and all previous values are lost. * * Example: \include Matrix_resize_int_int.cpp * Output: \verbinclude Matrix_resize_int_int.out * * \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t) */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols) { eigen_assert( EIGEN_IMPLIES(RowsAtCompileTime!=Dynamic,rows==RowsAtCompileTime) && EIGEN_IMPLIES(ColsAtCompileTime!=Dynamic,cols==ColsAtCompileTime) && EIGEN_IMPLIES(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic,rows<=MaxRowsAtCompileTime) && EIGEN_IMPLIES(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic,cols<=MaxColsAtCompileTime) && rows>=0 && cols>=0 && "Invalid sizes when resizing a matrix or array."); internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(rows, cols); #ifdef EIGEN_INITIALIZE_COEFFS Index size = rows*cols; bool size_changed = size != this->size(); m_storage.resize(size, rows, cols); if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED #else m_storage.resize(rows*cols, rows, cols); #endif } /** Resizes \c *this to a vector of length \a size * * \only_for_vectors. This method does not work for * partially dynamic matrices when the static dimension is anything other * than 1. For example it will not work with Matrix<double, 2, Dynamic>. * * Example: \include Matrix_resize_int.cpp * Output: \verbinclude Matrix_resize_int.out * * \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t) */ EIGEN_DEVICE_FUNC inline void resize(Index size) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase) eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime==Dynamic || size<=MaxSizeAtCompileTime)) || SizeAtCompileTime == size) && size>=0); #ifdef EIGEN_INITIALIZE_COEFFS bool size_changed = size != this->size(); #endif if(RowsAtCompileTime == 1) m_storage.resize(size, 1, size); else m_storage.resize(size, size, 1); #ifdef EIGEN_INITIALIZE_COEFFS if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED #endif } /** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange * as in the example below. * * Example: \include Matrix_resize_NoChange_int.cpp * Output: \verbinclude Matrix_resize_NoChange_int.out * * \sa resize(Index,Index) */ EIGEN_DEVICE_FUNC inline void resize(NoChange_t, Index cols) { resize(rows(), cols); } /** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange * as in the example below. * * Example: \include Matrix_resize_int_NoChange.cpp * Output: \verbinclude Matrix_resize_int_NoChange.out * * \sa resize(Index,Index) */ EIGEN_DEVICE_FUNC inline void resize(Index rows, NoChange_t) { resize(rows, cols()); } /** Resizes \c *this to have the same dimensions as \a other. * Takes care of doing all the checking that's needed. * * Note that copying a row-vector into a vector (and conversely) is allowed. * The resizing, if any, is then done in the appropriate way so that row-vectors * remain row-vectors and vectors remain vectors. */ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other) { const OtherDerived& other = _other.derived(); internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.rows(), other.cols()); const Index othersize = other.rows()*other.cols(); if(RowsAtCompileTime == 1) { eigen_assert(other.rows() == 1 || other.cols() == 1); resize(1, othersize); } else if(ColsAtCompileTime == 1) { eigen_assert(other.rows() == 1 || other.cols() == 1); resize(othersize, 1); } else resize(other.rows(), other.cols()); } /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. * * The method is intended for matrices of dynamic size. If you only want to change the number * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or * conservativeResize(Index, NoChange_t). * * Matrices are resized relative to the top-left element. In case values need to be * appended to the matrix they will be uninitialized. */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols) { internal::conservative_resize_like_impl<Derived>::run(*this, rows, cols); } /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. * * As opposed to conservativeResize(Index rows, Index cols), this version leaves * the number of columns unchanged. * * In case the matrix is growing, new rows will be uninitialized. */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t) { // Note: see the comment in conservativeResize(Index,Index) conservativeResize(rows, cols()); } /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. * * As opposed to conservativeResize(Index rows, Index cols), this version leaves * the number of rows unchanged. * * In case the matrix is growing, new columns will be uninitialized. */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols) { // Note: see the comment in conservativeResize(Index,Index) conservativeResize(rows(), cols); } /** Resizes the vector to \a size while retaining old values. * * \only_for_vectors. This method does not work for * partially dynamic matrices when the static dimension is anything other * than 1. For example it will not work with Matrix<double, 2, Dynamic>. * * When values are appended, they will be uninitialized. */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResize(Index size) { internal::conservative_resize_like_impl<Derived>::run(*this, size); } /** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched. * * The method is intended for matrices of dynamic size. If you only want to change the number * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or * conservativeResize(Index, NoChange_t). * * Matrices are resized relative to the top-left element. In case values need to be * appended to the matrix they will copied from \c other. */ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other) { internal::conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other); } /** This is a special case of the templated operator=. Its purpose is to * prevent a default operator= from hiding the templated operator=. */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other) { return _set(other); } /** \sa MatrixBase::lazyAssign() */ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other) { _resize_to_match(other); return Base::lazyAssign(other.derived()); } template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func) { resize(func.rows(), func.cols()); return Base::operator=(func); } // Prevent user from trying to instantiate PlainObjectBase objects // by making all its constructor protected. See bug 1074. protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase() : m_storage() { // _check_template_params(); // EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED } #ifndef EIGEN_PARSED_BY_DOXYGEN // FIXME is it still needed ? /** \internal */ EIGEN_DEVICE_FUNC explicit PlainObjectBase(internal::constructor_without_unaligned_array_assert) : m_storage(internal::constructor_without_unaligned_array_assert()) { // _check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED } #endif #if EIGEN_HAS_RVALUE_REFERENCES EIGEN_DEVICE_FUNC PlainObjectBase(PlainObjectBase&& other) EIGEN_NOEXCEPT : m_storage( std::move(other.m_storage) ) { } EIGEN_DEVICE_FUNC PlainObjectBase& operator=(PlainObjectBase&& other) EIGEN_NOEXCEPT { using std::swap; swap(m_storage, other.m_storage); return *this; } #endif /** Copy constructor */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const PlainObjectBase& other) : Base(), m_storage(other.m_storage) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols) : m_storage(size, rows, cols) { // _check_template_params(); // EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED } /** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase<OtherDerived> &other) : m_storage() { _check_template_params(); resizeLike(other); _set_noalias(other); } /** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other) : m_storage() { _check_template_params(); resizeLike(other); *this = other.derived(); } /** \brief Copy constructor with in-place evaluation */ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PlainObjectBase(const ReturnByValue<OtherDerived>& other) { _check_template_params(); // FIXME this does not automatically transpose vectors if necessary resize(other.rows(), other.cols()); other.evalTo(this->derived()); } public: /** \brief Copies the generic expression \a other into *this. * \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other) */ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other) { _resize_to_match(other); Base::operator=(other.derived()); return this->derived(); } /** \name Map * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects, * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned * \a data pointers. * * \see class Map */ //@{ static inline ConstMapType Map(const Scalar* data) { return ConstMapType(data); } static inline MapType Map(Scalar* data) { return MapType(data); } static inline ConstMapType Map(const Scalar* data, Index size) { return ConstMapType(data, size); } static inline MapType Map(Scalar* data, Index size) { return MapType(data, size); } static inline ConstMapType Map(const Scalar* data, Index rows, Index cols) { return ConstMapType(data, rows, cols); } static inline MapType Map(Scalar* data, Index rows, Index cols) { return MapType(data, rows, cols); } static inline ConstAlignedMapType MapAligned(const Scalar* data) { return ConstAlignedMapType(data); } static inline AlignedMapType MapAligned(Scalar* data) { return AlignedMapType(data); } static inline ConstAlignedMapType MapAligned(const Scalar* data, Index size) { return ConstAlignedMapType(data, size); } static inline AlignedMapType MapAligned(Scalar* data, Index size) { return AlignedMapType(data, size); } static inline ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols) { return ConstAlignedMapType(data, rows, cols); } static inline AlignedMapType MapAligned(Scalar* data, Index rows, Index cols) { return AlignedMapType(data, rows, cols); } template<int Outer, int Inner> static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, const Stride<Outer, Inner>& stride) { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, stride); } template<int Outer, int Inner> static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, const Stride<Outer, Inner>& stride) { return typename StridedMapType<Stride<Outer, Inner> >::type(data, stride); } template<int Outer, int Inner> static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index size, const Stride<Outer, Inner>& stride) { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, size, stride); } template<int Outer, int Inner> static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index size, const Stride<Outer, Inner>& stride) { return typename StridedMapType<Stride<Outer, Inner> >::type(data, size, stride); } template<int Outer, int Inner> static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); } template<int Outer, int Inner> static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) { return typename StridedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); } template<int Outer, int Inner> static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, const Stride<Outer, Inner>& stride) { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, stride); } template<int Outer, int Inner> static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, const Stride<Outer, Inner>& stride) { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, stride); } template<int Outer, int Inner> static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index size, const Stride<Outer, Inner>& stride) { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); } template<int Outer, int Inner> static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index size, const Stride<Outer, Inner>& stride) { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); } template<int Outer, int Inner> static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); } template<int Outer, int Inner> static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); } //@} using Base::setConstant; EIGEN_DEVICE_FUNC Derived& setConstant(Index size, const Scalar& val); EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, Index cols, const Scalar& val); using Base::setZero; EIGEN_DEVICE_FUNC Derived& setZero(Index size); EIGEN_DEVICE_FUNC Derived& setZero(Index rows, Index cols); using Base::setOnes; EIGEN_DEVICE_FUNC Derived& setOnes(Index size); EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, Index cols); using Base::setRandom; Derived& setRandom(Index size); Derived& setRandom(Index rows, Index cols); #ifdef EIGEN_PLAINOBJECTBASE_PLUGIN #include EIGEN_PLAINOBJECTBASE_PLUGIN #endif protected: /** \internal Resizes *this in preparation for assigning \a other to it. * Takes care of doing all the checking that's needed. * * Note that copying a row-vector into a vector (and conversely) is allowed. * The resizing, if any, is then done in the appropriate way so that row-vectors * remain row-vectors and vectors remain vectors. */ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other) { #ifdef EIGEN_NO_AUTOMATIC_RESIZING eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size()) : (rows() == other.rows() && cols() == other.cols()))) && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); EIGEN_ONLY_USED_FOR_DEBUG(other); #else resizeLike(other); #endif } /** * \brief Copies the value of the expression \a other into \c *this with automatic resizing. * * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), * it will be initialized. * * Note that copying a row-vector into a vector (and conversely) is allowed. * The resizing, if any, is then done in the appropriate way so that row-vectors * remain row-vectors and vectors remain vectors. * * \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias() * * \internal */ // aliasing is dealt once in internall::call_assignment // so at this stage we have to assume aliasing... and resising has to be done later. template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other) { internal::call_assignment(this->derived(), other.derived()); return this->derived(); } /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which * is the case when creating a new matrix) so one can enforce lazy evaluation. * * \sa operator=(const MatrixBase<OtherDerived>&), _set() */ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other) { // I don't think we need this resize call since the lazyAssign will anyways resize // and lazyAssign will be called by the assign selector. //_resize_to_match(other); // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because // it wouldn't allow to copy a row-vector into a column-vector. internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>()); return this->derived(); } template<typename T0, typename T1> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, typename internal::enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0) { EIGEN_STATIC_ASSERT(bool(NumTraits<T0>::IsInteger) && bool(NumTraits<T1>::IsInteger), FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED) resize(rows,cols); } template<typename T0, typename T1> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init2(const T0& val0, const T1& val1, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) m_storage.data()[0] = Scalar(val0); m_storage.data()[1] = Scalar(val1); } template<typename T0, typename T1> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init2(const Index& val0, const Index& val1, typename internal::enable_if< (!internal::is_same<Index,Scalar>::value) && (internal::is_same<T0,Index>::value) && (internal::is_same<T1,Index>::value) && Base::SizeAtCompileTime==2,T1>::type* = 0) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) m_storage.data()[0] = Scalar(val0); m_storage.data()[1] = Scalar(val1); } // The argument is convertible to the Index type and we either have a non 1x1 Matrix, or a dynamic-sized Array, // then the argument is meant to be the size of the object. template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if< (Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value) && ((!internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value || Base::SizeAtCompileTime==Dynamic)),T>::type* = 0) { // NOTE MSVC 2008 complains if we directly put bool(NumTraits<T>::IsInteger) as the EIGEN_STATIC_ASSERT argument. const bool is_integer = NumTraits<T>::IsInteger; EIGEN_UNUSED_VARIABLE(is_integer); EIGEN_STATIC_ASSERT(is_integer, FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED) resize(size); } // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type can be implicitely converted) template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const Scalar& val0, typename internal::enable_if<Base::SizeAtCompileTime==1 && internal::is_convertible<T, Scalar>::value,T>::type* = 0) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1) m_storage.data()[0] = val0; } // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type match the index type) template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const Index& val0, typename internal::enable_if< (!internal::is_same<Index,Scalar>::value) && (internal::is_same<Index,T>::value) && Base::SizeAtCompileTime==1 && internal::is_convertible<T, Scalar>::value,T*>::type* = 0) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1) m_storage.data()[0] = Scalar(val0); } // Initialize a fixed size matrix from a pointer to raw data template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const Scalar* data){ this->_set_noalias(ConstMapType(data)); } // Initialize an arbitrary matrix from a dense expression template<typename T, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const DenseBase<OtherDerived>& other){ this->_set_noalias(other); } // Initialize an arbitrary matrix from an object convertible to the Derived type. template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const Derived& other){ this->_set_noalias(other); } // Initialize an arbitrary matrix from a generic Eigen expression template<typename T, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const EigenBase<OtherDerived>& other){ this->derived() = other; } template<typename T, typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const ReturnByValue<OtherDerived>& other) { resize(other.rows(), other.cols()); other.evalTo(this->derived()); } template<typename T, typename OtherDerived, int ColsAtCompileTime> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const RotationBase<OtherDerived,ColsAtCompileTime>& r) { this->derived() = r; } // For fixed-size Array<Scalar,...> template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const Scalar& val0, typename internal::enable_if< Base::SizeAtCompileTime!=Dynamic && Base::SizeAtCompileTime!=1 && internal::is_convertible<T, Scalar>::value && internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T>::type* = 0) { Base::setConstant(val0); } // For fixed-size Array<Index,...> template<typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _init1(const Index& val0, typename internal::enable_if< (!internal::is_same<Index,Scalar>::value) && (internal::is_same<Index,T>::value) && Base::SizeAtCompileTime!=Dynamic && Base::SizeAtCompileTime!=1 && internal::is_convertible<T, Scalar>::value && internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T*>::type* = 0) { Base::setConstant(val0); } template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> friend struct internal::matrix_swap_impl; public: #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal * \brief Override DenseBase::swap() since for dynamic-sized matrices * of same type it is enough to swap the data pointers. */ template<typename OtherDerived> EIGEN_DEVICE_FUNC void swap(DenseBase<OtherDerived> & other) { enum { SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime==Dynamic }; internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.derived()); } /** \internal * \brief const version forwarded to DenseBase::swap */ template<typename OtherDerived> EIGEN_DEVICE_FUNC void swap(DenseBase<OtherDerived> const & other) { Base::swap(other.derived()); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void _check_template_params() { EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor) && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (Options&RowMajor)==0) && ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0)) && ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0)) && ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0)) && ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0)) && (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic) && (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic) && (Options & (DontAlign|RowMajor)) == Options), INVALID_MATRIX_TEMPLATE_PARAMETERS) } enum { IsPlainObjectBase = 1 }; #endif }; namespace internal { template <typename Derived, typename OtherDerived, bool IsVector> struct conservative_resize_like_impl { static void run(DenseBase<Derived>& _this, Index rows, Index cols) { if (_this.rows() == rows && _this.cols() == cols) return; EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows (!Derived::IsRowMajor && _this.rows() == rows) ) // column-major and we change only the number of columns { internal::check_rows_cols_for_overflow<Derived::MaxSizeAtCompileTime>::run(rows, cols); _this.derived().m_storage.conservativeResize(rows*cols,rows,cols); } else { // The storage order does not allow us to use reallocation. typename Derived::PlainObject tmp(rows,cols); const Index common_rows = numext::mini(rows, _this.rows()); const Index common_cols = numext::mini(cols, _this.cols()); tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); _this.derived().swap(tmp); } } static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other) { if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; // Note: Here is space for improvement. Basically, for conservativeResize(Index,Index), // neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the // dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or // conservativeResize(NoChange_t, Index cols). For these methods new static asserts like // EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good. EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived) if ( ( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows (!Derived::IsRowMajor && _this.rows() == other.rows()) ) // column-major and we change only the number of columns { const Index new_rows = other.rows() - _this.rows(); const Index new_cols = other.cols() - _this.cols(); _this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols()); if (new_rows>0) _this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows); else if (new_cols>0) _this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols); } else { // The storage order does not allow us to use reallocation. typename Derived::PlainObject tmp(other); const Index common_rows = numext::mini(tmp.rows(), _this.rows()); const Index common_cols = numext::mini(tmp.cols(), _this.cols()); tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); _this.derived().swap(tmp); } } }; // Here, the specialization for vectors inherits from the general matrix case // to allow calling .conservativeResize(rows,cols) on vectors. template <typename Derived, typename OtherDerived> struct conservative_resize_like_impl<Derived,OtherDerived,true> : conservative_resize_like_impl<Derived,OtherDerived,false> { using conservative_resize_like_impl<Derived,OtherDerived,false>::run; static void run(DenseBase<Derived>& _this, Index size) { const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size; const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1; _this.derived().m_storage.conservativeResize(size,new_rows,new_cols); } static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other) { if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; const Index num_new_elements = other.size() - _this.size(); const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows(); const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1; _this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols); if (num_new_elements > 0) _this.tail(num_new_elements) = other.tail(num_new_elements); } }; template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl { EIGEN_DEVICE_FUNC static inline void run(MatrixTypeA& a, MatrixTypeB& b) { a.base().swap(b); } }; template<typename MatrixTypeA, typename MatrixTypeB> struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true> { EIGEN_DEVICE_FUNC static inline void run(MatrixTypeA& a, MatrixTypeB& b) { static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_DENSESTORAGEBASE_H