// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_DOT_H #define EIGEN_DOT_H namespace Eigen { namespace internal { // helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot // with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE // looking at the static assertions. Thus this is a trick to get better compile errors. template<typename T, typename U, // the NeedToTranspose condition here is taken straight from Assign.h bool NeedToTranspose = T::IsVectorAtCompileTime && U::IsVectorAtCompileTime && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1) | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&". // revert to || as soon as not needed anymore. (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1)) > struct dot_nocheck { typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod; typedef typename conj_prod::result_type ResScalar; EIGEN_DEVICE_FUNC static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) { return a.template binaryExpr<conj_prod>(b).sum(); } }; template<typename T, typename U> struct dot_nocheck<T, U, true> { typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod; typedef typename conj_prod::result_type ResScalar; EIGEN_DEVICE_FUNC static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) { return a.transpose().template binaryExpr<conj_prod>(b).sum(); } }; } // end namespace internal /** \fn MatrixBase::dot * \returns the dot product of *this with other. * * \only_for_vectors * * \note If the scalar type is complex numbers, then this function returns the hermitian * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the * second variable. * * \sa squaredNorm(), norm() */ template<typename Derived> template<typename OtherDerived> EIGEN_DEVICE_FUNC typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) #if !(defined(EIGEN_NO_STATIC_ASSERT) && defined(EIGEN_NO_DEBUG)) typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func; EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar); #endif eigen_assert(size() == other.size()); return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other); } //---------- implementation of L2 norm and related functions ---------- /** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm. * In both cases, it consists in the sum of the square of all the matrix entries. * For vectors, this is also equals to the dot product of \c *this with itself. * * \sa dot(), norm(), lpNorm() */ template<typename Derived> EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const { return numext::real((*this).cwiseAbs2().sum()); } /** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm. * In both cases, it consists in the square root of the sum of the square of all the matrix entries. * For vectors, this is also equals to the square root of the dot product of \c *this with itself. * * \sa lpNorm(), dot(), squaredNorm() */ template<typename Derived> inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const { return numext::sqrt(squaredNorm()); } /** \returns an expression of the quotient of \c *this by its own norm. * * \warning If the input vector is too small (i.e., this->norm()==0), * then this function returns a copy of the input. * * \only_for_vectors * * \sa norm(), normalize() */ template<typename Derived> inline const typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::normalized() const { typedef typename internal::nested_eval<Derived,2>::type _Nested; _Nested n(derived()); RealScalar z = n.squaredNorm(); // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU if(z>RealScalar(0)) return n / numext::sqrt(z); else return n; } /** Normalizes the vector, i.e. divides it by its own norm. * * \only_for_vectors * * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. * * \sa norm(), normalized() */ template<typename Derived> inline void MatrixBase<Derived>::normalize() { RealScalar z = squaredNorm(); // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU if(z>RealScalar(0)) derived() /= numext::sqrt(z); } /** \returns an expression of the quotient of \c *this by its own norm while avoiding underflow and overflow. * * \only_for_vectors * * This method is analogue to the normalized() method, but it reduces the risk of * underflow and overflow when computing the norm. * * \warning If the input vector is too small (i.e., this->norm()==0), * then this function returns a copy of the input. * * \sa stableNorm(), stableNormalize(), normalized() */ template<typename Derived> inline const typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::stableNormalized() const { typedef typename internal::nested_eval<Derived,3>::type _Nested; _Nested n(derived()); RealScalar w = n.cwiseAbs().maxCoeff(); RealScalar z = (n/w).squaredNorm(); if(z>RealScalar(0)) return n / (numext::sqrt(z)*w); else return n; } /** Normalizes the vector while avoid underflow and overflow * * \only_for_vectors * * This method is analogue to the normalize() method, but it reduces the risk of * underflow and overflow when computing the norm. * * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. * * \sa stableNorm(), stableNormalized(), normalize() */ template<typename Derived> inline void MatrixBase<Derived>::stableNormalize() { RealScalar w = cwiseAbs().maxCoeff(); RealScalar z = (derived()/w).squaredNorm(); if(z>RealScalar(0)) derived() /= numext::sqrt(z)*w; } //---------- implementation of other norms ---------- namespace internal { template<typename Derived, int p> struct lpNorm_selector { typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar run(const MatrixBase<Derived>& m) { EIGEN_USING_STD_MATH(pow) return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p); } }; template<typename Derived> struct lpNorm_selector<Derived, 1> { EIGEN_DEVICE_FUNC static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) { return m.cwiseAbs().sum(); } }; template<typename Derived> struct lpNorm_selector<Derived, 2> { EIGEN_DEVICE_FUNC static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) { return m.norm(); } }; template<typename Derived> struct lpNorm_selector<Derived, Infinity> { typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar; EIGEN_DEVICE_FUNC static inline RealScalar run(const MatrixBase<Derived>& m) { if(Derived::SizeAtCompileTime==0 || (Derived::SizeAtCompileTime==Dynamic && m.size()==0)) return RealScalar(0); return m.cwiseAbs().maxCoeff(); } }; } // end namespace internal /** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values * of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$ * norm, that is the maximum of the absolute values of the coefficients of \c *this. * * In all cases, if \c *this is empty, then the value 0 is returned. * * \note For matrices, this function does not compute the <a href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink. * * \sa norm() */ template<typename Derived> template<int p> #ifndef EIGEN_PARSED_BY_DOXYGEN inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real #else MatrixBase<Derived>::RealScalar #endif MatrixBase<Derived>::lpNorm() const { return internal::lpNorm_selector<Derived, p>::run(*this); } //---------- implementation of isOrthogonal / isUnitary ---------- /** \returns true if *this is approximately orthogonal to \a other, * within the precision given by \a prec. * * Example: \include MatrixBase_isOrthogonal.cpp * Output: \verbinclude MatrixBase_isOrthogonal.out */ template<typename Derived> template<typename OtherDerived> bool MatrixBase<Derived>::isOrthogonal (const MatrixBase<OtherDerived>& other, const RealScalar& prec) const { typename internal::nested_eval<Derived,2>::type nested(derived()); typename internal::nested_eval<OtherDerived,2>::type otherNested(other.derived()); return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); } /** \returns true if *this is approximately an unitary matrix, * within the precision given by \a prec. In the case where the \a Scalar * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. * * \note This can be used to check whether a family of vectors forms an orthonormal basis. * Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an * orthonormal basis. * * Example: \include MatrixBase_isUnitary.cpp * Output: \verbinclude MatrixBase_isUnitary.out */ template<typename Derived> bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const { typename internal::nested_eval<Derived,1>::type self(derived()); for(Index i = 0; i < cols(); ++i) { if(!internal::isApprox(self.col(i).squaredNorm(), static_cast<RealScalar>(1), prec)) return false; for(Index j = 0; j < i; ++j) if(!internal::isMuchSmallerThan(self.col(i).dot(self.col(j)), static_cast<Scalar>(1), prec)) return false; } return true; } } // end namespace Eigen #endif // EIGEN_DOT_H