// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2010-2013 Hauke Heibel <hauke.heibel@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATRIXSTORAGE_H #define EIGEN_MATRIXSTORAGE_H #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN #define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(X) X; EIGEN_DENSE_STORAGE_CTOR_PLUGIN; #else #define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(X) #endif namespace Eigen { namespace internal { struct constructor_without_unaligned_array_assert {}; template<typename T, int Size> EIGEN_DEVICE_FUNC void check_static_allocation_size() { // if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit #if EIGEN_STACK_ALLOCATION_LIMIT EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG); #endif } /** \internal * Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned: * to 16 bytes boundary if the total size is a multiple of 16 bytes. */ template <typename T, int Size, int MatrixOrArrayOptions, int Alignment = (MatrixOrArrayOptions&DontAlign) ? 0 : compute_default_alignment<T,Size>::value > struct plain_array { T array[Size]; EIGEN_DEVICE_FUNC plain_array() { check_static_allocation_size<T,Size>(); } EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) { check_static_allocation_size<T,Size>(); } }; #if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT) #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) #elif EIGEN_GNUC_AT_LEAST(4,7) // GCC 4.7 is too aggressive in its optimizations and remove the alignement test based on the fact the array is declared to be aligned. // See this bug report: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53900 // Hiding the origin of the array pointer behind a function argument seems to do the trick even if the function is inlined: template<typename PtrType> EIGEN_ALWAYS_INLINE PtrType eigen_unaligned_array_assert_workaround_gcc47(PtrType array) { return array; } #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \ eigen_assert((internal::UIntPtr(eigen_unaligned_array_assert_workaround_gcc47(array)) & (sizemask)) == 0 \ && "this assertion is explained here: " \ "http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \ " **** READ THIS WEB PAGE !!! ****"); #else #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \ eigen_assert((internal::UIntPtr(array) & (sizemask)) == 0 \ && "this assertion is explained here: " \ "http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \ " **** READ THIS WEB PAGE !!! ****"); #endif template <typename T, int Size, int MatrixOrArrayOptions> struct plain_array<T, Size, MatrixOrArrayOptions, 8> { EIGEN_ALIGN_TO_BOUNDARY(8) T array[Size]; EIGEN_DEVICE_FUNC plain_array() { EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(7); check_static_allocation_size<T,Size>(); } EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) { check_static_allocation_size<T,Size>(); } }; template <typename T, int Size, int MatrixOrArrayOptions> struct plain_array<T, Size, MatrixOrArrayOptions, 16> { EIGEN_ALIGN_TO_BOUNDARY(16) T array[Size]; EIGEN_DEVICE_FUNC plain_array() { EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(15); check_static_allocation_size<T,Size>(); } EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) { check_static_allocation_size<T,Size>(); } }; template <typename T, int Size, int MatrixOrArrayOptions> struct plain_array<T, Size, MatrixOrArrayOptions, 32> { EIGEN_ALIGN_TO_BOUNDARY(32) T array[Size]; EIGEN_DEVICE_FUNC plain_array() { EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(31); check_static_allocation_size<T,Size>(); } EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) { check_static_allocation_size<T,Size>(); } }; template <typename T, int Size, int MatrixOrArrayOptions> struct plain_array<T, Size, MatrixOrArrayOptions, 64> { EIGEN_ALIGN_TO_BOUNDARY(64) T array[Size]; EIGEN_DEVICE_FUNC plain_array() { EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(63); check_static_allocation_size<T,Size>(); } EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) { check_static_allocation_size<T,Size>(); } }; template <typename T, int MatrixOrArrayOptions, int Alignment> struct plain_array<T, 0, MatrixOrArrayOptions, Alignment> { T array[1]; EIGEN_DEVICE_FUNC plain_array() {} EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) {} }; } // end namespace internal /** \internal * * \class DenseStorage * \ingroup Core_Module * * \brief Stores the data of a matrix * * This class stores the data of fixed-size, dynamic-size or mixed matrices * in a way as compact as possible. * * \sa Matrix */ template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage; // purely fixed-size matrix template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage { internal::plain_array<T,Size,_Options> m_data; public: EIGEN_DEVICE_FUNC DenseStorage() { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size) } EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(internal::constructor_without_unaligned_array_assert()) {} EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data) { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size) } EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) { if (this != &other) m_data = other.m_data; return *this; } EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) eigen_internal_assert(size==rows*cols && rows==_Rows && cols==_Cols); EIGEN_UNUSED_VARIABLE(size); EIGEN_UNUSED_VARIABLE(rows); EIGEN_UNUSED_VARIABLE(cols); } EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); } EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;} EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;} EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {} EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {} EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; } EIGEN_DEVICE_FUNC T *data() { return m_data.array; } }; // null matrix template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0, _Rows, _Cols, _Options> { public: EIGEN_DEVICE_FUNC DenseStorage() {} EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) {} EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage&) {} EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage&) { return *this; } EIGEN_DEVICE_FUNC DenseStorage(Index,Index,Index) {} EIGEN_DEVICE_FUNC void swap(DenseStorage& ) {} EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;} EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;} EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {} EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {} EIGEN_DEVICE_FUNC const T *data() const { return 0; } EIGEN_DEVICE_FUNC T *data() { return 0; } }; // more specializations for null matrices; these are necessary to resolve ambiguities template<typename T, int _Options> class DenseStorage<T, 0, Dynamic, Dynamic, _Options> : public DenseStorage<T, 0, 0, 0, _Options> { }; template<typename T, int _Rows, int _Options> class DenseStorage<T, 0, _Rows, Dynamic, _Options> : public DenseStorage<T, 0, 0, 0, _Options> { }; template<typename T, int _Cols, int _Options> class DenseStorage<T, 0, Dynamic, _Cols, _Options> : public DenseStorage<T, 0, 0, 0, _Options> { }; // dynamic-size matrix with fixed-size storage template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic, Dynamic, _Options> { internal::plain_array<T,Size,_Options> m_data; Index m_rows; Index m_cols; public: EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0), m_cols(0) {} EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {} EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows), m_cols(other.m_cols) {} EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) { if (this != &other) { m_data = other.m_data; m_rows = other.m_rows; m_cols = other.m_cols; } return *this; } EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index cols) : m_rows(rows), m_cols(cols) {} EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); } EIGEN_DEVICE_FUNC Index rows() const {return m_rows;} EIGEN_DEVICE_FUNC Index cols() const {return m_cols;} EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index cols) { m_rows = rows; m_cols = cols; } EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index cols) { m_rows = rows; m_cols = cols; } EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; } EIGEN_DEVICE_FUNC T *data() { return m_data.array; } }; // dynamic-size matrix with fixed-size storage and fixed width template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Size, Dynamic, _Cols, _Options> { internal::plain_array<T,Size,_Options> m_data; Index m_rows; public: EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0) {} EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {} EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows) {} EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) { if (this != &other) { m_data = other.m_data; m_rows = other.m_rows; } return *this; } EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index) : m_rows(rows) {} EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); } EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;} EIGEN_DEVICE_FUNC Index cols(void) const {return _Cols;} EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index) { m_rows = rows; } EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index) { m_rows = rows; } EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; } EIGEN_DEVICE_FUNC T *data() { return m_data.array; } }; // dynamic-size matrix with fixed-size storage and fixed height template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Size, _Rows, Dynamic, _Options> { internal::plain_array<T,Size,_Options> m_data; Index m_cols; public: EIGEN_DEVICE_FUNC DenseStorage() : m_cols(0) {} EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {} EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_cols(other.m_cols) {} EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) { if (this != &other) { m_data = other.m_data; m_cols = other.m_cols; } return *this; } EIGEN_DEVICE_FUNC DenseStorage(Index, Index, Index cols) : m_cols(cols) {} EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); } EIGEN_DEVICE_FUNC Index rows(void) const {return _Rows;} EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;} void conservativeResize(Index, Index, Index cols) { m_cols = cols; } void resize(Index, Index, Index cols) { m_cols = cols; } EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; } EIGEN_DEVICE_FUNC T *data() { return m_data.array; } }; // purely dynamic matrix. template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynamic, _Options> { T *m_data; Index m_rows; Index m_cols; public: EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0), m_cols(0) {} EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0), m_cols(0) {} EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows), m_cols(cols) { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) eigen_internal_assert(size==rows*cols && rows>=0 && cols >=0); } EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(other.m_rows*other.m_cols)) , m_rows(other.m_rows) , m_cols(other.m_cols) { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows*m_cols) internal::smart_copy(other.m_data, other.m_data+other.m_rows*other.m_cols, m_data); } EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) { if (this != &other) { DenseStorage tmp(other); this->swap(tmp); } return *this; } #if EIGEN_HAS_RVALUE_REFERENCES EIGEN_DEVICE_FUNC DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT : m_data(std::move(other.m_data)) , m_rows(std::move(other.m_rows)) , m_cols(std::move(other.m_cols)) { other.m_data = nullptr; other.m_rows = 0; other.m_cols = 0; } EIGEN_DEVICE_FUNC DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT { using std::swap; swap(m_data, other.m_data); swap(m_rows, other.m_rows); swap(m_cols, other.m_cols); return *this; } #endif EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); } EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); } EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;} EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;} void conservativeResize(Index size, Index rows, Index cols) { m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*m_cols); m_rows = rows; m_cols = cols; } EIGEN_DEVICE_FUNC void resize(Index size, Index rows, Index cols) { if(size != m_rows*m_cols) { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); if (size) m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size); else m_data = 0; EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) } m_rows = rows; m_cols = cols; } EIGEN_DEVICE_FUNC const T *data() const { return m_data; } EIGEN_DEVICE_FUNC T *data() { return m_data; } }; // matrix with dynamic width and fixed height (so that matrix has dynamic size). template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Rows, Dynamic, _Options> { T *m_data; Index m_cols; public: EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_cols(0) {} explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {} EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(cols) { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) eigen_internal_assert(size==rows*cols && rows==_Rows && cols >=0); EIGEN_UNUSED_VARIABLE(rows); } EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(_Rows*other.m_cols)) , m_cols(other.m_cols) { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_cols*_Rows) internal::smart_copy(other.m_data, other.m_data+_Rows*m_cols, m_data); } EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) { if (this != &other) { DenseStorage tmp(other); this->swap(tmp); } return *this; } #if EIGEN_HAS_RVALUE_REFERENCES EIGEN_DEVICE_FUNC DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT : m_data(std::move(other.m_data)) , m_cols(std::move(other.m_cols)) { other.m_data = nullptr; other.m_cols = 0; } EIGEN_DEVICE_FUNC DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT { using std::swap; swap(m_data, other.m_data); swap(m_cols, other.m_cols); return *this; } #endif EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); } EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); } EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;} EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;} EIGEN_DEVICE_FUNC void conservativeResize(Index size, Index, Index cols) { m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, _Rows*m_cols); m_cols = cols; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index, Index cols) { if(size != _Rows*m_cols) { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); if (size) m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size); else m_data = 0; EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) } m_cols = cols; } EIGEN_DEVICE_FUNC const T *data() const { return m_data; } EIGEN_DEVICE_FUNC T *data() { return m_data; } }; // matrix with dynamic height and fixed width (so that matrix has dynamic size). template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dynamic, _Cols, _Options> { T *m_data; Index m_rows; public: EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0) {} explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {} EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows) { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) eigen_internal_assert(size==rows*cols && rows>=0 && cols == _Cols); EIGEN_UNUSED_VARIABLE(cols); } EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(other.m_rows*_Cols)) , m_rows(other.m_rows) { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows*_Cols) internal::smart_copy(other.m_data, other.m_data+other.m_rows*_Cols, m_data); } EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) { if (this != &other) { DenseStorage tmp(other); this->swap(tmp); } return *this; } #if EIGEN_HAS_RVALUE_REFERENCES EIGEN_DEVICE_FUNC DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT : m_data(std::move(other.m_data)) , m_rows(std::move(other.m_rows)) { other.m_data = nullptr; other.m_rows = 0; } EIGEN_DEVICE_FUNC DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT { using std::swap; swap(m_data, other.m_data); swap(m_rows, other.m_rows); return *this; } #endif EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); } EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); } EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;} EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;} void conservativeResize(Index size, Index rows, Index) { m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*_Cols); m_rows = rows; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index rows, Index) { if(size != m_rows*_Cols) { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); if (size) m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size); else m_data = 0; EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({}) } m_rows = rows; } EIGEN_DEVICE_FUNC const T *data() const { return m_data; } EIGEN_DEVICE_FUNC T *data() { return m_data; } }; } // end namespace Eigen #endif // EIGEN_MATRIX_H