/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.1 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief FBO test utilities. *//*--------------------------------------------------------------------*/ #include "es31fFboTestUtil.hpp" #include "sglrContextUtil.hpp" #include "sglrGLContext.hpp" #include "sglrReferenceContext.hpp" #include "gluTextureUtil.hpp" #include "tcuTextureUtil.hpp" #include "deStringUtil.hpp" #include "deMath.h" #include "glwEnums.hpp" #include "glwFunctions.hpp" #include <limits> namespace deqp { namespace gles31 { namespace Functional { namespace FboTestUtil { using std::string; using std::vector; using tcu::Vec2; using tcu::Vec3; using tcu::Vec4; using tcu::IVec2; using tcu::IVec3; using tcu::IVec4; static rr::GenericVecType mapDataTypeToGenericVecType(glu::DataType type) { switch (type) { case glu::TYPE_FLOAT_VEC4: return rr::GENERICVECTYPE_FLOAT; case glu::TYPE_INT_VEC4: return rr::GENERICVECTYPE_INT32; case glu::TYPE_UINT_VEC4: return rr::GENERICVECTYPE_UINT32; default: DE_ASSERT(DE_FALSE); return rr::GENERICVECTYPE_LAST; } } template <typename T> static tcu::Vector<T, 4> castVectorSaturate (const tcu::Vec4& in) { return tcu::Vector<T, 4>(((double)in.x() + 0.5 >= (double)std::numeric_limits<T>::max()) ? (std::numeric_limits<T>::max()) : (((double)in.x() - 0.5 <= (double)std::numeric_limits<T>::min()) ? (std::numeric_limits<T>::min()) : (T(in.x()))), ((double)in.y() + 0.5 >= (double)std::numeric_limits<T>::max()) ? (std::numeric_limits<T>::max()) : (((double)in.y() - 0.5 <= (double)std::numeric_limits<T>::min()) ? (std::numeric_limits<T>::min()) : (T(in.y()))), ((double)in.z() + 0.5 >= (double)std::numeric_limits<T>::max()) ? (std::numeric_limits<T>::max()) : (((double)in.z() - 0.5 <= (double)std::numeric_limits<T>::min()) ? (std::numeric_limits<T>::min()) : (T(in.z()))), ((double)in.w() + 0.5 >= (double)std::numeric_limits<T>::max()) ? (std::numeric_limits<T>::max()) : (((double)in.w() - 0.5 <= (double)std::numeric_limits<T>::min()) ? (std::numeric_limits<T>::min()) : (T(in.w())))); } static string genTexFragmentShader (const vector<glu::DataType>& samplerTypes, glu::DataType outputType) { const char* precision = "highp"; std::ostringstream src; src << "#version 300 es\n" << "layout(location = 0) out highp " << glu::getDataTypeName(outputType) << " o_color0;\n"; src << "in highp vec2 v_coord;\n"; for (int samplerNdx = 0; samplerNdx < (int)samplerTypes.size(); samplerNdx++) { src << "uniform " << precision << " " << glu::getDataTypeName(samplerTypes[samplerNdx]) << " u_sampler" << samplerNdx << ";\n"; src << "uniform " << precision << " vec4 u_texScale" << samplerNdx << ";\n"; src << "uniform " << precision << " vec4 u_texBias" << samplerNdx << ";\n"; } // Output scale & bias src << "uniform " << precision << " vec4 u_outScale0;\n" << "uniform " << precision << " vec4 u_outBias0;\n"; src << "\n" << "void main (void)\n" << "{\n" << " " << precision << " vec4 out0 = vec4(0.0);\n"; // Texture input fetch and combine. for (int inNdx = 0; inNdx < (int)samplerTypes.size(); inNdx++) src << "\tout0 += vec4(" << "texture(u_sampler" << inNdx << ", v_coord)) * u_texScale" << inNdx << " + u_texBias" << inNdx << ";\n"; // Write output. src << " o_color0 = " << glu::getDataTypeName(outputType) << "(out0 * u_outScale0 + u_outBias0);\n"; src << "}\n"; return src.str(); } static sglr::pdec::ShaderProgramDeclaration genTexture2DShaderDecl (const DataTypes& samplerTypes, glu::DataType outputType) { sglr::pdec::ShaderProgramDeclaration decl; decl << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT); decl << sglr::pdec::VertexAttribute("a_coord", rr::GENERICVECTYPE_FLOAT); decl << sglr::pdec::VertexToFragmentVarying(rr::GENERICVECTYPE_FLOAT); decl << sglr::pdec::FragmentOutput(mapDataTypeToGenericVecType(outputType)); decl << sglr::pdec::VertexSource( "#version 300 es\n" "in highp vec4 a_position;\n" "in highp vec2 a_coord;\n" "out highp vec2 v_coord;\n" "void main(void)\n" "{\n" " gl_Position = a_position;\n" " v_coord = a_coord;\n" "}\n"); decl << sglr::pdec::FragmentSource(genTexFragmentShader(samplerTypes.vec, outputType)); decl << sglr::pdec::Uniform("u_outScale0", glu::TYPE_FLOAT_VEC4); decl << sglr::pdec::Uniform("u_outBias0", glu::TYPE_FLOAT_VEC4); for (size_t ndx = 0; ndx < samplerTypes.vec.size(); ++ndx) { decl << sglr::pdec::Uniform(std::string("u_sampler") + de::toString(ndx), samplerTypes.vec[ndx]); decl << sglr::pdec::Uniform(std::string("u_texScale") + de::toString(ndx), glu::TYPE_FLOAT_VEC4); decl << sglr::pdec::Uniform(std::string("u_texBias") + de::toString(ndx), glu::TYPE_FLOAT_VEC4); } return decl; } Texture2DShader::Texture2DShader (const DataTypes& samplerTypes, glu::DataType outputType, const Vec4& outScale, const Vec4& outBias) : sglr::ShaderProgram (genTexture2DShaderDecl(samplerTypes, outputType)) , m_outScale (outScale) , m_outBias (outBias) , m_outputType (outputType) { m_inputs.resize(samplerTypes.vec.size()); // Initialize units. for (int ndx = 0; ndx < (int)m_inputs.size(); ndx++) { m_inputs[ndx].unitNdx = ndx; m_inputs[ndx].scale = Vec4(1.0f); m_inputs[ndx].bias = Vec4(0.0f); } } void Texture2DShader::setUnit (int inputNdx, int unitNdx) { m_inputs[inputNdx].unitNdx = unitNdx; } void Texture2DShader::setTexScaleBias (int inputNdx, const Vec4& scale, const Vec4& bias) { m_inputs[inputNdx].scale = scale; m_inputs[inputNdx].bias = bias; } void Texture2DShader::setOutScaleBias (const Vec4& scale, const Vec4& bias) { m_outScale = scale; m_outBias = bias; } void Texture2DShader::setUniforms (sglr::Context& gl, deUint32 program) const { gl.useProgram(program); for (int texNdx = 0; texNdx < (int)m_inputs.size(); texNdx++) { string samplerName = string("u_sampler") + de::toString(texNdx); string scaleName = string("u_texScale") + de::toString(texNdx); string biasName = string("u_texBias") + de::toString(texNdx); gl.uniform1i(gl.getUniformLocation(program, samplerName.c_str()), m_inputs[texNdx].unitNdx); gl.uniform4fv(gl.getUniformLocation(program, scaleName.c_str()), 1, m_inputs[texNdx].scale.getPtr()); gl.uniform4fv(gl.getUniformLocation(program, biasName.c_str()), 1, m_inputs[texNdx].bias.getPtr()); } gl.uniform4fv(gl.getUniformLocation(program, "u_outScale0"), 1, m_outScale.getPtr()); gl.uniform4fv(gl.getUniformLocation(program, "u_outBias0"), 1, m_outBias.getPtr()); } void Texture2DShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const { for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) { rr::VertexPacket& packet = *packets[packetNdx]; packet.position = rr::readVertexAttribFloat(inputs[0], packet.instanceNdx, packet.vertexNdx); packet.outputs[0] = rr::readVertexAttribFloat(inputs[1], packet.instanceNdx, packet.vertexNdx); } } void Texture2DShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const { const tcu::Vec4 outScale (m_uniforms[0].value.f4); const tcu::Vec4 outBias (m_uniforms[1].value.f4); tcu::Vec2 texCoords[4]; tcu::Vec4 colors[4]; for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) { // setup tex coords for (int fragNdx = 0; fragNdx < 4; ++fragNdx) { const tcu::Vec4 coord = rr::readTriangleVarying<float>(packets[packetNdx], context, 0, fragNdx); texCoords[fragNdx] = tcu::Vec2(coord.x(), coord.y()); } // clear result for (int fragNdx = 0; fragNdx < 4; ++fragNdx) colors[fragNdx] = tcu::Vec4(0.0f); // sample each texture for (int ndx = 0; ndx < (int)m_inputs.size(); ndx++) { const sglr::rc::Texture2D* tex = m_uniforms[2 + ndx*3].sampler.tex2D; const tcu::Vec4 scale (m_uniforms[2 + ndx*3 + 1].value.f4); const tcu::Vec4 bias (m_uniforms[2 + ndx*3 + 2].value.f4); tcu::Vec4 tmpColors[4]; tex->sample4(tmpColors, texCoords); for (int fragNdx = 0; fragNdx < 4; ++fragNdx) colors[fragNdx] += tmpColors[fragNdx] * scale + bias; } // write out for (int fragNdx = 0; fragNdx < 4; ++fragNdx) { const tcu::Vec4 color = colors[fragNdx] * outScale + outBias; const tcu::IVec4 icolor = castVectorSaturate<deInt32>(color); const tcu::UVec4 uicolor = castVectorSaturate<deUint32>(color); if (m_outputType == glu::TYPE_FLOAT_VEC4) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, color); else if (m_outputType == glu::TYPE_INT_VEC4) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, icolor); else if (m_outputType == glu::TYPE_UINT_VEC4) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, uicolor); else DE_ASSERT(DE_FALSE); } } } TextureCubeArrayShader::TextureCubeArrayShader (glu::DataType samplerType, glu::DataType outputType, glu::GLSLVersion glslVersion) : sglr::ShaderProgram(sglr::pdec::ShaderProgramDeclaration() << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexAttribute("a_coord", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexToFragmentVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::FragmentOutput(mapDataTypeToGenericVecType(outputType)) << sglr::pdec::Uniform("u_coordMat", glu::TYPE_FLOAT_MAT3) << sglr::pdec::Uniform("u_sampler0", samplerType) << sglr::pdec::Uniform("u_scale", glu::TYPE_FLOAT_VEC4) << sglr::pdec::Uniform("u_bias", glu::TYPE_FLOAT_VEC4) << sglr::pdec::Uniform("u_layer", glu::TYPE_INT) << sglr::pdec::VertexSource( string("") + ((glslVersion == glu::GLSL_VERSION_310_ES) ? "#version 310 es\n" "#extension GL_EXT_texture_cube_map_array : require\n" : "#version 320 es\n") + "in highp vec4 a_position;\n" "in mediump vec2 a_coord;\n" "uniform mat3 u_coordMat;\n" "out highp vec3 v_coord;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" " v_coord = u_coordMat * vec3(a_coord, 1.0);\n" "}\n") << sglr::pdec::FragmentSource( string("") + ((glslVersion == glu::GLSL_VERSION_310_ES) ? "#version 310 es\n" "#extension GL_EXT_texture_cube_map_array : require\n" : "#version 320 es\n") + "uniform highp " + glu::getDataTypeName(samplerType) + " u_sampler0;\n" "uniform highp vec4 u_scale;\n" "uniform highp vec4 u_bias;\n" "uniform highp int u_layer;\n" "in highp vec3 v_coord;\n" "layout(location = 0) out highp " + glu::getDataTypeName(outputType) + " o_color;\n" "void main (void)\n" "{\n" " o_color = " + glu::getDataTypeName(outputType) + "(vec4(texture(u_sampler0, vec4(v_coord, u_layer))) * u_scale + u_bias);\n" "}\n")) , m_texScale (1.0f) , m_texBias (0.0f) , m_layer (0) , m_outputType (outputType) { TCU_CHECK_INTERNAL(glslVersion == glu::GLSL_VERSION_310_ES || glslVersion == glu::GLSL_VERSION_320_ES); } void TextureCubeArrayShader::setLayer (int layer) { m_layer = layer; } void TextureCubeArrayShader::setFace (tcu::CubeFace face) { static const float s_cubeTransforms[][3*3] = { // Face -X: (x, y, 1) -> (-1, -(2*y-1), +(2*x-1)) { 0.0f, 0.0f, -1.0f, 0.0f, -2.0f, 1.0f, 2.0f, 0.0f, -1.0f }, // Face +X: (x, y, 1) -> (+1, -(2*y-1), -(2*x-1)) { 0.0f, 0.0f, 1.0f, 0.0f, -2.0f, 1.0f, -2.0f, 0.0f, 1.0f }, // Face -Y: (x, y, 1) -> (+(2*x-1), -1, -(2*y-1)) { 2.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, -2.0f, 1.0f }, // Face +Y: (x, y, 1) -> (+(2*x-1), +1, +(2*y-1)) { 2.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 2.0f, -1.0f }, // Face -Z: (x, y, 1) -> (-(2*x-1), -(2*y-1), -1) { -2.0f, 0.0f, 1.0f, 0.0f, -2.0f, 1.0f, 0.0f, 0.0f, -1.0f }, // Face +Z: (x, y, 1) -> (+(2*x-1), -(2*y-1), +1) { 2.0f, 0.0f, -1.0f, 0.0f, -2.0f, 1.0f, 0.0f, 0.0f, 1.0f } }; DE_ASSERT(de::inBounds<int>(face, 0, tcu::CUBEFACE_LAST)); m_coordMat = tcu::Mat3(s_cubeTransforms[face]); } void TextureCubeArrayShader::setTexScaleBias (const Vec4& scale, const Vec4& bias) { m_texScale = scale; m_texBias = bias; } void TextureCubeArrayShader::setUniforms (sglr::Context& gl, deUint32 program) const { gl.useProgram(program); gl.uniform1i(gl.getUniformLocation(program, "u_sampler0"), 0); gl.uniformMatrix3fv(gl.getUniformLocation(program, "u_coordMat"), 1, GL_FALSE, m_coordMat.getColumnMajorData().getPtr()); gl.uniform1i(gl.getUniformLocation(program, "u_layer"), m_layer); gl.uniform4fv(gl.getUniformLocation(program, "u_scale"), 1, m_texScale.getPtr()); gl.uniform4fv(gl.getUniformLocation(program, "u_bias"), 1, m_texBias.getPtr()); } void TextureCubeArrayShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const { tcu::Mat3 texCoordMat = tcu::Mat3(m_uniforms[0].value.m3); for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) { rr::VertexPacket& packet = *packets[packetNdx]; const tcu::Vec2 a_coord = rr::readVertexAttribFloat(inputs[1], packet.instanceNdx, packet.vertexNdx).xy(); const tcu::Vec3 v_coord = texCoordMat * tcu::Vec3(a_coord.x(), a_coord.y(), 1.0f); packet.position = rr::readVertexAttribFloat(inputs[0], packet.instanceNdx, packet.vertexNdx); packet.outputs[0] = tcu::Vec4(v_coord.x(), v_coord.y(), v_coord.z(), 0.0f); } } void TextureCubeArrayShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const { const tcu::Vec4 texScale (m_uniforms[2].value.f4); const tcu::Vec4 texBias (m_uniforms[3].value.f4); tcu::Vec4 texCoords[4]; tcu::Vec4 colors[4]; for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) { const sglr::rc::TextureCubeArray* tex = m_uniforms[1].sampler.texCubeArray; for (int fragNdx = 0; fragNdx < 4; ++fragNdx) { const tcu::Vec4 coord = rr::readTriangleVarying<float>(packets[packetNdx], context, 0, fragNdx); texCoords[fragNdx] = tcu::Vec4(coord.x(), coord.y(), coord.z(), (float)m_layer); } tex->sample4(colors, texCoords); for (int fragNdx = 0; fragNdx < 4; ++fragNdx) { const tcu::Vec4 color = colors[fragNdx] * texScale + texBias; const tcu::IVec4 icolor = castVectorSaturate<deInt32>(color); const tcu::UVec4 uicolor = castVectorSaturate<deUint32>(color); if (m_outputType == glu::TYPE_FLOAT_VEC4) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, color); else if (m_outputType == glu::TYPE_INT_VEC4) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, icolor); else if (m_outputType == glu::TYPE_UINT_VEC4) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, uicolor); else DE_ASSERT(DE_FALSE); } } } void clearColorBuffer (sglr::Context& ctx, const tcu::TextureFormat& format, const tcu::Vec4& value) { const tcu::TextureChannelClass fmtClass = tcu::getTextureChannelClass(format.type); switch (fmtClass) { case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: ctx.clearBufferfv(GL_COLOR, 0, value.getPtr()); break; case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: ctx.clearBufferuiv(GL_COLOR, 0, value.asUint().getPtr()); break; case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: ctx.clearBufferiv(GL_COLOR, 0, value.asInt().getPtr()); break; default: DE_ASSERT(DE_FALSE); } } void readPixels (sglr::Context& ctx, tcu::Surface& dst, int x, int y, int width, int height, const tcu::TextureFormat& format, const tcu::Vec4& scale, const tcu::Vec4& bias) { tcu::TextureFormat readFormat = getFramebufferReadFormat(format); glu::TransferFormat transferFmt = glu::getTransferFormat(readFormat); int alignment = 4; // \note GL_PACK_ALIGNMENT = 4 is assumed. int rowSize = deAlign32(readFormat.getPixelSize()*width, alignment); vector<deUint8> data (rowSize*height); ctx.readPixels(x, y, width, height, transferFmt.format, transferFmt.dataType, &data[0]); // Convert to surface. tcu::ConstPixelBufferAccess src(readFormat, width, height, 1, rowSize, 0, &data[0]); dst.setSize(width, height); tcu::PixelBufferAccess dstAccess = dst.getAccess(); for (int yo = 0; yo < height; yo++) for (int xo = 0; xo < width; xo++) dstAccess.setPixel(src.getPixel(xo, yo) * scale + bias, xo, yo); } static const char* getFboIncompleteReasonName (deUint32 reason) { switch (reason) { case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT"; case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: return "GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT"; case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS: return "GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS"; case GL_FRAMEBUFFER_UNSUPPORTED: return "GL_FRAMEBUFFER_UNSUPPORTED"; case GL_FRAMEBUFFER_COMPLETE: return "GL_FRAMEBUFFER_COMPLETE"; default: return "UNKNOWN"; } } FboIncompleteException::FboIncompleteException (deUint32 reason, const char* file, int line) : TestError ("Framebuffer is not complete", getFboIncompleteReasonName(reason), file, line) , m_reason (reason) { } const char* getFormatName (deUint32 format) { switch (format) { case GL_RGB565: return "rgb565"; case GL_RGB5_A1: return "rgb5_a1"; case GL_RGBA4: return "rgba4"; case GL_DEPTH_COMPONENT16: return "depth_component16"; case GL_STENCIL_INDEX8: return "stencil_index8"; case GL_RGBA32F: return "rgba32f"; case GL_RGBA32I: return "rgba32i"; case GL_RGBA32UI: return "rgba32ui"; case GL_RGBA16F: return "rgba16f"; case GL_RGBA16I: return "rgba16i"; case GL_RGBA16UI: return "rgba16ui"; case GL_RGBA8: return "rgba8"; case GL_RGBA8I: return "rgba8i"; case GL_RGBA8UI: return "rgba8ui"; case GL_SRGB8_ALPHA8: return "srgb8_alpha8"; case GL_RGB10_A2: return "rgb10_a2"; case GL_RGB10_A2UI: return "rgb10_a2ui"; case GL_RGBA8_SNORM: return "rgba8_snorm"; case GL_RGB8: return "rgb8"; case GL_R11F_G11F_B10F: return "r11f_g11f_b10f"; case GL_RGB32F: return "rgb32f"; case GL_RGB32I: return "rgb32i"; case GL_RGB32UI: return "rgb32ui"; case GL_RGB16F: return "rgb16f"; case GL_RGB16I: return "rgb16i"; case GL_RGB16UI: return "rgb16ui"; case GL_RGB8_SNORM: return "rgb8_snorm"; case GL_RGB8I: return "rgb8i"; case GL_RGB8UI: return "rgb8ui"; case GL_SRGB8: return "srgb8"; case GL_RGB9_E5: return "rgb9_e5"; case GL_RG32F: return "rg32f"; case GL_RG32I: return "rg32i"; case GL_RG32UI: return "rg32ui"; case GL_RG16F: return "rg16f"; case GL_RG16I: return "rg16i"; case GL_RG16UI: return "rg16ui"; case GL_RG8: return "rg8"; case GL_RG8I: return "rg8i"; case GL_RG8UI: return "rg8ui"; case GL_RG8_SNORM: return "rg8_snorm"; case GL_R32F: return "r32f"; case GL_R32I: return "r32i"; case GL_R32UI: return "r32ui"; case GL_R16F: return "r16f"; case GL_R16I: return "r16i"; case GL_R16UI: return "r16ui"; case GL_R8: return "r8"; case GL_R8I: return "r8i"; case GL_R8UI: return "r8ui"; case GL_R8_SNORM: return "r8_snorm"; case GL_DEPTH_COMPONENT32F: return "depth_component32f"; case GL_DEPTH_COMPONENT24: return "depth_component24"; case GL_DEPTH32F_STENCIL8: return "depth32f_stencil8"; case GL_DEPTH24_STENCIL8: return "depth24_stencil8"; default: TCU_FAIL("Unknown format"); } } glu::DataType getFragmentOutputType (const tcu::TextureFormat& format) { switch (tcu::getTextureChannelClass(format.type)) { case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: return glu::TYPE_FLOAT_VEC4; case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: return glu::TYPE_UINT_VEC4; case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: return glu::TYPE_INT_VEC4; default: DE_FATAL("Unknown format"); return glu::TYPE_LAST; } } tcu::TextureFormat getFramebufferReadFormat (const tcu::TextureFormat& format) { switch (tcu::getTextureChannelClass(format.type)) { case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: return tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::FLOAT); case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: return tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8); case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: return tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32); case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: return tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::SIGNED_INT32); default: DE_FATAL("Unknown format"); return tcu::TextureFormat(); } } static int calculateU8ConversionError (int srcBits) { if (srcBits > 0) { const int clampedBits = de::clamp<int>(srcBits, 0, 8); const int srcMaxValue = de::max((1<<clampedBits) - 1, 1); const int error = int(deFloatCeil(255.0f * 2.0f / float(srcMaxValue))); return de::clamp<int>(error, 0, 255); } else return 1; } tcu::RGBA getFormatThreshold (const tcu::TextureFormat& format) { const tcu::IVec4 bits = tcu::getTextureFormatBitDepth(format); return tcu::RGBA(calculateU8ConversionError(bits.x()), calculateU8ConversionError(bits.y()), calculateU8ConversionError(bits.z()), calculateU8ConversionError(bits.w())); } tcu::RGBA getFormatThreshold (deUint32 glFormat) { const tcu::TextureFormat format = glu::mapGLInternalFormat(glFormat); return getFormatThreshold(format); } } // FboTestUtil } // Functional } // gles31 } // deqp