// Copyright (c) 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Tests for unique type declaration rules validator. #include <string> #include "gmock/gmock.h" #include "test/unit_spirv.h" #include "test/val/val_fixtures.h" namespace spvtools { namespace val { namespace { using ::testing::HasSubstr; using ::testing::Not; using ValidateConversion = spvtest::ValidateBase<bool>; std::string GenerateShaderCode( const std::string& body, const std::string& capabilities_and_extensions = "", const std::string& decorations = "", const std::string& types = "", const std::string& variables = "") { const std::string capabilities = R"( OpCapability Shader OpCapability Int64 OpCapability Float64)"; const std::string after_extension_before_decorations = R"( OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %main "main" OpExecutionMode %main OriginUpperLeft)"; const std::string after_decorations_before_types = R"( %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f32 = OpTypeFloat 32 %u32 = OpTypeInt 32 0 %s32 = OpTypeInt 32 1 %f64 = OpTypeFloat 64 %u64 = OpTypeInt 64 0 %s64 = OpTypeInt 64 1 %boolvec2 = OpTypeVector %bool 2 %s32vec2 = OpTypeVector %s32 2 %u32vec2 = OpTypeVector %u32 2 %u64vec2 = OpTypeVector %u64 2 %f32vec2 = OpTypeVector %f32 2 %f64vec2 = OpTypeVector %f64 2 %boolvec3 = OpTypeVector %bool 3 %u32vec3 = OpTypeVector %u32 3 %u64vec3 = OpTypeVector %u64 3 %s32vec3 = OpTypeVector %s32 3 %f32vec3 = OpTypeVector %f32 3 %f64vec3 = OpTypeVector %f64 3 %boolvec4 = OpTypeVector %bool 4 %u32vec4 = OpTypeVector %u32 4 %u64vec4 = OpTypeVector %u64 4 %s32vec4 = OpTypeVector %s32 4 %f32vec4 = OpTypeVector %f32 4 %f64vec4 = OpTypeVector %f64 4 %f32_0 = OpConstant %f32 0 %f32_1 = OpConstant %f32 1 %f32_2 = OpConstant %f32 2 %f32_3 = OpConstant %f32 3 %f32_4 = OpConstant %f32 4 %s32_0 = OpConstant %s32 0 %s32_1 = OpConstant %s32 1 %s32_2 = OpConstant %s32 2 %s32_3 = OpConstant %s32 3 %s32_4 = OpConstant %s32 4 %s32_m1 = OpConstant %s32 -1 %u32_0 = OpConstant %u32 0 %u32_1 = OpConstant %u32 1 %u32_2 = OpConstant %u32 2 %u32_3 = OpConstant %u32 3 %u32_4 = OpConstant %u32 4 %f64_0 = OpConstant %f64 0 %f64_1 = OpConstant %f64 1 %f64_2 = OpConstant %f64 2 %f64_3 = OpConstant %f64 3 %f64_4 = OpConstant %f64 4 %s64_0 = OpConstant %s64 0 %s64_1 = OpConstant %s64 1 %s64_2 = OpConstant %s64 2 %s64_3 = OpConstant %s64 3 %s64_4 = OpConstant %s64 4 %s64_m1 = OpConstant %s64 -1 %u64_0 = OpConstant %u64 0 %u64_1 = OpConstant %u64 1 %u64_2 = OpConstant %u64 2 %u64_3 = OpConstant %u64 3 %u64_4 = OpConstant %u64 4 %u32vec2_01 = OpConstantComposite %u32vec2 %u32_0 %u32_1 %u32vec2_12 = OpConstantComposite %u32vec2 %u32_1 %u32_2 %u32vec3_012 = OpConstantComposite %u32vec3 %u32_0 %u32_1 %u32_2 %u32vec3_123 = OpConstantComposite %u32vec3 %u32_1 %u32_2 %u32_3 %u32vec4_0123 = OpConstantComposite %u32vec4 %u32_0 %u32_1 %u32_2 %u32_3 %u32vec4_1234 = OpConstantComposite %u32vec4 %u32_1 %u32_2 %u32_3 %u32_4 %s32vec2_01 = OpConstantComposite %s32vec2 %s32_0 %s32_1 %s32vec2_12 = OpConstantComposite %s32vec2 %s32_1 %s32_2 %s32vec3_012 = OpConstantComposite %s32vec3 %s32_0 %s32_1 %s32_2 %s32vec3_123 = OpConstantComposite %s32vec3 %s32_1 %s32_2 %s32_3 %s32vec4_0123 = OpConstantComposite %s32vec4 %s32_0 %s32_1 %s32_2 %s32_3 %s32vec4_1234 = OpConstantComposite %s32vec4 %s32_1 %s32_2 %s32_3 %s32_4 %f32vec2_01 = OpConstantComposite %f32vec2 %f32_0 %f32_1 %f32vec2_12 = OpConstantComposite %f32vec2 %f32_1 %f32_2 %f32vec3_012 = OpConstantComposite %f32vec3 %f32_0 %f32_1 %f32_2 %f32vec3_123 = OpConstantComposite %f32vec3 %f32_1 %f32_2 %f32_3 %f32vec4_0123 = OpConstantComposite %f32vec4 %f32_0 %f32_1 %f32_2 %f32_3 %f32vec4_1234 = OpConstantComposite %f32vec4 %f32_1 %f32_2 %f32_3 %f32_4 %f64vec2_01 = OpConstantComposite %f64vec2 %f64_0 %f64_1 %f64vec2_12 = OpConstantComposite %f64vec2 %f64_1 %f64_2 %f64vec3_012 = OpConstantComposite %f64vec3 %f64_0 %f64_1 %f64_2 %f64vec3_123 = OpConstantComposite %f64vec3 %f64_1 %f64_2 %f64_3 %f64vec4_0123 = OpConstantComposite %f64vec4 %f64_0 %f64_1 %f64_2 %f64_3 %f64vec4_1234 = OpConstantComposite %f64vec4 %f64_1 %f64_2 %f64_3 %f64_4 %true = OpConstantTrue %bool %false = OpConstantFalse %bool %f32ptr_func = OpTypePointer Function %f32)"; const std::string after_variables_before_body = R"( %main = OpFunction %void None %func %main_entry = OpLabel)"; const std::string after_body = R"( OpReturn OpFunctionEnd)"; return capabilities + capabilities_and_extensions + after_extension_before_decorations + decorations + after_decorations_before_types + types + variables + after_variables_before_body + body + after_body; } std::string GenerateKernelCode( const std::string& body, const std::string& capabilities_and_extensions = "") { const std::string capabilities = R"( OpCapability Addresses OpCapability Kernel OpCapability Linkage OpCapability GenericPointer OpCapability Int64 OpCapability Float64)"; const std::string after_extension_before_body = R"( OpMemoryModel Physical32 OpenCL %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f32 = OpTypeFloat 32 %u32 = OpTypeInt 32 0 %f64 = OpTypeFloat 64 %u64 = OpTypeInt 64 0 %boolvec2 = OpTypeVector %bool 2 %u32vec2 = OpTypeVector %u32 2 %u64vec2 = OpTypeVector %u64 2 %f32vec2 = OpTypeVector %f32 2 %f64vec2 = OpTypeVector %f64 2 %boolvec3 = OpTypeVector %bool 3 %u32vec3 = OpTypeVector %u32 3 %u64vec3 = OpTypeVector %u64 3 %f32vec3 = OpTypeVector %f32 3 %f64vec3 = OpTypeVector %f64 3 %boolvec4 = OpTypeVector %bool 4 %u32vec4 = OpTypeVector %u32 4 %u64vec4 = OpTypeVector %u64 4 %f32vec4 = OpTypeVector %f32 4 %f64vec4 = OpTypeVector %f64 4 %f32_0 = OpConstant %f32 0 %f32_1 = OpConstant %f32 1 %f32_2 = OpConstant %f32 2 %f32_3 = OpConstant %f32 3 %f32_4 = OpConstant %f32 4 %u32_0 = OpConstant %u32 0 %u32_1 = OpConstant %u32 1 %u32_2 = OpConstant %u32 2 %u32_3 = OpConstant %u32 3 %u32_4 = OpConstant %u32 4 %f64_0 = OpConstant %f64 0 %f64_1 = OpConstant %f64 1 %f64_2 = OpConstant %f64 2 %f64_3 = OpConstant %f64 3 %f64_4 = OpConstant %f64 4 %u64_0 = OpConstant %u64 0 %u64_1 = OpConstant %u64 1 %u64_2 = OpConstant %u64 2 %u64_3 = OpConstant %u64 3 %u64_4 = OpConstant %u64 4 %u32vec2_01 = OpConstantComposite %u32vec2 %u32_0 %u32_1 %u32vec2_12 = OpConstantComposite %u32vec2 %u32_1 %u32_2 %u32vec3_012 = OpConstantComposite %u32vec3 %u32_0 %u32_1 %u32_2 %u32vec3_123 = OpConstantComposite %u32vec3 %u32_1 %u32_2 %u32_3 %u32vec4_0123 = OpConstantComposite %u32vec4 %u32_0 %u32_1 %u32_2 %u32_3 %u32vec4_1234 = OpConstantComposite %u32vec4 %u32_1 %u32_2 %u32_3 %u32_4 %f32vec2_01 = OpConstantComposite %f32vec2 %f32_0 %f32_1 %f32vec2_12 = OpConstantComposite %f32vec2 %f32_1 %f32_2 %f32vec3_012 = OpConstantComposite %f32vec3 %f32_0 %f32_1 %f32_2 %f32vec3_123 = OpConstantComposite %f32vec3 %f32_1 %f32_2 %f32_3 %f32vec4_0123 = OpConstantComposite %f32vec4 %f32_0 %f32_1 %f32_2 %f32_3 %f32vec4_1234 = OpConstantComposite %f32vec4 %f32_1 %f32_2 %f32_3 %f32_4 %f64vec2_01 = OpConstantComposite %f64vec2 %f64_0 %f64_1 %f64vec2_12 = OpConstantComposite %f64vec2 %f64_1 %f64_2 %f64vec3_012 = OpConstantComposite %f64vec3 %f64_0 %f64_1 %f64_2 %f64vec3_123 = OpConstantComposite %f64vec3 %f64_1 %f64_2 %f64_3 %f64vec4_0123 = OpConstantComposite %f64vec4 %f64_0 %f64_1 %f64_2 %f64_3 %f64vec4_1234 = OpConstantComposite %f64vec4 %f64_1 %f64_2 %f64_3 %f64_4 %true = OpConstantTrue %bool %false = OpConstantFalse %bool %f32ptr_func = OpTypePointer Function %f32 %u32ptr_func = OpTypePointer Function %u32 %f32ptr_gen = OpTypePointer Generic %f32 %f32ptr_inp = OpTypePointer Input %f32 %f32ptr_wg = OpTypePointer Workgroup %f32 %f32ptr_cwg = OpTypePointer CrossWorkgroup %f32 %f32inp = OpVariable %f32ptr_inp Input %main = OpFunction %void None %func %main_entry = OpLabel)"; const std::string after_body = R"( OpReturn OpFunctionEnd)"; return capabilities + capabilities_and_extensions + after_extension_before_body + body + after_body; } TEST_F(ValidateConversion, ConvertFToUSuccess) { const std::string body = R"( %val1 = OpConvertFToU %u32 %f32_1 %val2 = OpConvertFToU %u32 %f64_0 %val3 = OpConvertFToU %u32vec2 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertFToUWrongResultType) { const std::string body = R"( %val = OpConvertFToU %s32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected unsigned int scalar or vector type as Result " "Type: ConvertFToU")); } TEST_F(ValidateConversion, ConvertFToUWrongInputType) { const std::string body = R"( %val = OpConvertFToU %u32 %u32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to be float scalar or vector: ConvertFToU")); } TEST_F(ValidateConversion, ConvertFToUDifferentDimension) { const std::string body = R"( %val = OpConvertFToU %u32 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result " "Type: ConvertFToU")); } TEST_F(ValidateConversion, ConvertFToSSuccess) { const std::string body = R"( %val1 = OpConvertFToS %s32 %f32_1 %val2 = OpConvertFToS %u32 %f64_0 %val3 = OpConvertFToS %s32vec2 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertFToSWrongResultType) { const std::string body = R"( %val = OpConvertFToS %bool %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected int scalar or vector type as Result Type: ConvertFToS")); } TEST_F(ValidateConversion, ConvertFToSWrongInputType) { const std::string body = R"( %val = OpConvertFToS %s32 %u32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to be float scalar or vector: ConvertFToS")); } TEST_F(ValidateConversion, ConvertFToSDifferentDimension) { const std::string body = R"( %val = OpConvertFToS %u32 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result " "Type: ConvertFToS")); } TEST_F(ValidateConversion, ConvertSToFSuccess) { const std::string body = R"( %val1 = OpConvertSToF %f32 %u32_1 %val2 = OpConvertSToF %f32 %s64_0 %val3 = OpConvertSToF %f32vec2 %s32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertSToFWrongResultType) { const std::string body = R"( %val = OpConvertSToF %u32 %s32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected float scalar or vector type as Result Type: ConvertSToF")); } TEST_F(ValidateConversion, ConvertSToFWrongInputType) { const std::string body = R"( %val = OpConvertSToF %f32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to be int scalar or vector: ConvertSToF")); } TEST_F(ValidateConversion, ConvertSToFDifferentDimension) { const std::string body = R"( %val = OpConvertSToF %f32 %u32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result " "Type: ConvertSToF")); } TEST_F(ValidateConversion, UConvertSuccess) { const std::string body = R"( %val1 = OpUConvert %u32 %u64_1 %val2 = OpUConvert %u64 %s32_0 %val3 = OpUConvert %u64vec2 %s32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, UConvertWrongResultType) { const std::string body = R"( %val = OpUConvert %s32 %s32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected unsigned int scalar or vector type as Result " "Type: UConvert")); } TEST_F(ValidateConversion, UConvertWrongInputType) { const std::string body = R"( %val = OpUConvert %u32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be int scalar or vector: UConvert")); } TEST_F(ValidateConversion, UConvertDifferentDimension) { const std::string body = R"( %val = OpUConvert %u32 %u32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result " "Type: UConvert")); } TEST_F(ValidateConversion, UConvertSameBitWidth) { const std::string body = R"( %val = OpUConvert %u32 %s32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have different bit width from " "Result Type: UConvert")); } TEST_F(ValidateConversion, SConvertSuccess) { const std::string body = R"( %val1 = OpSConvert %s32 %u64_1 %val2 = OpSConvert %s64 %s32_0 %val3 = OpSConvert %u64vec2 %s32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, SConvertWrongResultType) { const std::string body = R"( %val = OpSConvert %f32 %s32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected int scalar or vector type as Result Type: SConvert")); } TEST_F(ValidateConversion, SConvertWrongInputType) { const std::string body = R"( %val = OpSConvert %u32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be int scalar or vector: SConvert")); } TEST_F(ValidateConversion, SConvertDifferentDimension) { const std::string body = R"( %val = OpSConvert %s32 %u32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result " "Type: SConvert")); } TEST_F(ValidateConversion, SConvertSameBitWidth) { const std::string body = R"( %val = OpSConvert %u32 %s32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have different bit width from " "Result Type: SConvert")); } TEST_F(ValidateConversion, FConvertSuccess) { const std::string body = R"( %val1 = OpFConvert %f32 %f64_1 %val2 = OpFConvert %f64 %f32_0 %val3 = OpFConvert %f64vec2 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, FConvertWrongResultType) { const std::string body = R"( %val = OpFConvert %u32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected float scalar or vector type as Result Type: FConvert")); } TEST_F(ValidateConversion, FConvertWrongInputType) { const std::string body = R"( %val = OpFConvert %f32 %u64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to be float scalar or vector: FConvert")); } TEST_F(ValidateConversion, FConvertDifferentDimension) { const std::string body = R"( %val = OpFConvert %f64 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result " "Type: FConvert")); } TEST_F(ValidateConversion, FConvertSameBitWidth) { const std::string body = R"( %val = OpFConvert %f32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have different bit width from " "Result Type: FConvert")); } TEST_F(ValidateConversion, QuantizeToF16Success) { const std::string body = R"( %val1 = OpQuantizeToF16 %f32 %f32_1 %val2 = OpQuantizeToF16 %f32 %f32_0 %val3 = OpQuantizeToF16 %f32vec2 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, QuantizeToF16WrongResultType) { const std::string body = R"( %val = OpQuantizeToF16 %u32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected 32-bit float scalar or vector type as Result Type: " "QuantizeToF16")); } TEST_F(ValidateConversion, QuantizeToF16WrongResultTypeBitWidth) { const std::string body = R"( %val = OpQuantizeToF16 %u64 %f64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected 32-bit float scalar or vector type as Result Type: " "QuantizeToF16")); } TEST_F(ValidateConversion, QuantizeToF16WrongInputType) { const std::string body = R"( %val = OpQuantizeToF16 %f32 %f64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected input type to be equal to Result Type: QuantizeToF16")); } TEST_F(ValidateConversion, ConvertFToS8BitStorage) { const std::string capabilities_and_extensions = R"( OpCapability StorageBuffer8BitAccess OpExtension "SPV_KHR_8bit_storage" OpExtension "SPV_KHR_storage_buffer_storage_class" )"; const std::string decorations = R"( OpDecorate %ssbo Block OpDecorate %ssbo Binding 0 OpDecorate %ssbo DescriptorSet 0 OpMemberDecorate %ssbo 0 Offset 0 )"; const std::string types = R"( %i8 = OpTypeInt 8 1 %i8ptr = OpTypePointer StorageBuffer %i8 %ssbo = OpTypeStruct %i8 %ssboptr = OpTypePointer StorageBuffer %ssbo )"; const std::string variables = R"( %var = OpVariable %ssboptr StorageBuffer )"; const std::string body = R"( %val = OpConvertFToS %i8 %f32_2 %accesschain = OpAccessChain %i8ptr %var %u32_0 OpStore %accesschain %val )"; CompileSuccessfully(GenerateShaderCode(body, capabilities_and_extensions, decorations, types, variables) .c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Invalid cast to 8-bit integer from a floating-point: ConvertFToS")); } TEST_F(ValidateConversion, ConvertFToU8BitStorage) { const std::string capabilities_and_extensions = R"( OpCapability StorageBuffer8BitAccess OpExtension "SPV_KHR_8bit_storage" OpExtension "SPV_KHR_storage_buffer_storage_class" )"; const std::string decorations = R"( OpDecorate %ssbo Block OpDecorate %ssbo Binding 0 OpDecorate %ssbo DescriptorSet 0 OpMemberDecorate %ssbo 0 Offset 0 )"; const std::string types = R"( %u8 = OpTypeInt 8 0 %u8ptr = OpTypePointer StorageBuffer %u8 %ssbo = OpTypeStruct %u8 %ssboptr = OpTypePointer StorageBuffer %ssbo )"; const std::string variables = R"( %var = OpVariable %ssboptr StorageBuffer )"; const std::string body = R"( %val = OpConvertFToU %u8 %f32_2 %accesschain = OpAccessChain %u8ptr %var %u32_0 OpStore %accesschain %val )"; CompileSuccessfully(GenerateShaderCode(body, capabilities_and_extensions, decorations, types, variables) .c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Invalid cast to 8-bit integer from a floating-point: ConvertFToU")); } TEST_F(ValidateConversion, ConvertSToF8BitStorage) { const std::string capabilities_and_extensions = R"( OpCapability StorageBuffer8BitAccess OpExtension "SPV_KHR_8bit_storage" OpExtension "SPV_KHR_storage_buffer_storage_class" )"; const std::string decorations = R"( OpDecorate %ssbo Block OpDecorate %ssbo Binding 0 OpDecorate %ssbo DescriptorSet 0 OpMemberDecorate %ssbo 0 Offset 0 )"; const std::string types = R"( %i8 = OpTypeInt 8 1 %i8ptr = OpTypePointer StorageBuffer %i8 %ssbo = OpTypeStruct %i8 %ssboptr = OpTypePointer StorageBuffer %ssbo )"; const std::string variables = R"( %var = OpVariable %ssboptr StorageBuffer )"; const std::string body = R"( %accesschain = OpAccessChain %i8ptr %var %u32_0 %load = OpLoad %i8 %accesschain %val = OpConvertSToF %f32 %load )"; CompileSuccessfully(GenerateShaderCode(body, capabilities_and_extensions, decorations, types, variables) .c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Invalid cast to floating-point from an 8-bit integer: ConvertSToF")); } TEST_F(ValidateConversion, ConvertUToF8BitStorage) { const std::string capabilities_and_extensions = R"( OpCapability StorageBuffer8BitAccess OpExtension "SPV_KHR_8bit_storage" OpExtension "SPV_KHR_storage_buffer_storage_class" )"; const std::string decorations = R"( OpDecorate %ssbo Block OpDecorate %ssbo Binding 0 OpDecorate %ssbo DescriptorSet 0 OpMemberDecorate %ssbo 0 Offset 0 )"; const std::string types = R"( %u8 = OpTypeInt 8 0 %u8ptr = OpTypePointer StorageBuffer %u8 %ssbo = OpTypeStruct %u8 %ssboptr = OpTypePointer StorageBuffer %ssbo )"; const std::string variables = R"( %var = OpVariable %ssboptr StorageBuffer )"; const std::string body = R"( %accesschain = OpAccessChain %u8ptr %var %u32_0 %load = OpLoad %u8 %accesschain %val = OpConvertUToF %f32 %load )"; CompileSuccessfully(GenerateShaderCode(body, capabilities_and_extensions, decorations, types, variables) .c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Invalid cast to floating-point from an 8-bit integer: ConvertUToF")); } TEST_F(ValidateConversion, ConvertPtrToUSuccess) { const std::string body = R"( %ptr = OpVariable %f32ptr_func Function %val1 = OpConvertPtrToU %u32 %ptr %val2 = OpConvertPtrToU %u64 %ptr )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertPtrToUWrongResultType) { const std::string body = R"( %ptr = OpVariable %f32ptr_func Function %val = OpConvertPtrToU %f32 %ptr )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected unsigned int scalar type as Result Type: " "ConvertPtrToU")); } TEST_F(ValidateConversion, ConvertPtrToUNotPointer) { const std::string body = R"( %val = OpConvertPtrToU %u32 %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be a pointer: ConvertPtrToU")); } TEST_F(ValidateConversion, SatConvertSToUSuccess) { const std::string body = R"( %val1 = OpSatConvertSToU %u32 %u64_2 %val2 = OpSatConvertSToU %u64 %u32_1 %val3 = OpSatConvertSToU %u64vec2 %u32vec2_12 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, SatConvertSToUWrongResultType) { const std::string body = R"( %val = OpSatConvertSToU %f32 %u32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected int scalar or vector type as Result Type: " "SatConvertSToU")); } TEST_F(ValidateConversion, SatConvertSToUWrongInputType) { const std::string body = R"( %val = OpSatConvertSToU %u32 %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected int scalar or vector as input: SatConvertSToU")); } TEST_F(ValidateConversion, SatConvertSToUDifferentDimension) { const std::string body = R"( %val = OpSatConvertSToU %u32 %u32vec2_12 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result Type: " "SatConvertSToU")); } TEST_F(ValidateConversion, ConvertUToPtrSuccess) { const std::string body = R"( %val1 = OpConvertUToPtr %f32ptr_func %u32_1 %val2 = OpConvertUToPtr %f32ptr_func %u64_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertUToPtrWrongResultType) { const std::string body = R"( %val = OpConvertUToPtr %f32 %u32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected Result Type to be a pointer: ConvertUToPtr")); } TEST_F(ValidateConversion, ConvertUToPtrNotInt) { const std::string body = R"( %val = OpConvertUToPtr %f32ptr_func %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected int scalar as input: ConvertUToPtr")); } TEST_F(ValidateConversion, ConvertUToPtrNotIntScalar) { const std::string body = R"( %val = OpConvertUToPtr %f32ptr_func %u32vec2_12 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected int scalar as input: ConvertUToPtr")); } TEST_F(ValidateConversion, PtrCastToGenericSuccess) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %val = OpPtrCastToGeneric %f32ptr_gen %ptr_func )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, PtrCastToGenericWrongResultType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %val = OpPtrCastToGeneric %f32 %ptr_func )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Result Type to be a pointer: PtrCastToGeneric")); } TEST_F(ValidateConversion, PtrCastToGenericWrongResultStorageClass) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %val = OpPtrCastToGeneric %f32ptr_func %ptr_func )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected Result Type to have storage class Generic: " "PtrCastToGeneric")); } TEST_F(ValidateConversion, PtrCastToGenericWrongInputType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %val = OpPtrCastToGeneric %f32ptr_gen %f32 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Operand 4[%float] cannot be a " "type")); } TEST_F(ValidateConversion, PtrCastToGenericWrongInputStorageClass) { const std::string body = R"( %val = OpPtrCastToGeneric %f32ptr_gen %f32inp )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have storage class Workgroup, " "CrossWorkgroup or Function: PtrCastToGeneric")); } TEST_F(ValidateConversion, PtrCastToGenericPointToDifferentType) { const std::string body = R"( %ptr_func = OpVariable %u32ptr_func Function %val = OpPtrCastToGeneric %f32ptr_gen %ptr_func )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input and Result Type to point to the same type: " "PtrCastToGeneric")); } TEST_F(ValidateConversion, GenericCastToPtrSuccess) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtr %f32ptr_func %ptr_gen %ptr_wg = OpGenericCastToPtr %f32ptr_wg %ptr_gen %ptr_cwg = OpGenericCastToPtr %f32ptr_cwg %ptr_gen )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, GenericCastToPtrWrongResultType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtr %f32 %ptr_gen )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Result Type to be a pointer: GenericCastToPtr")); } TEST_F(ValidateConversion, GenericCastToPtrWrongResultStorageClass) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtr %f32ptr_gen %ptr_gen )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected Result Type to have storage class Workgroup, " "CrossWorkgroup or Function: GenericCastToPtr")); } TEST_F(ValidateConversion, GenericCastToPtrWrongInputType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtr %f32ptr_func %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be a pointer: GenericCastToPtr")); } TEST_F(ValidateConversion, GenericCastToPtrWrongInputStorageClass) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_func2 = OpGenericCastToPtr %f32ptr_func %ptr_func )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have storage class Generic: " "GenericCastToPtr")); } TEST_F(ValidateConversion, GenericCastToPtrPointToDifferentType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtr %u32ptr_func %ptr_gen )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input and Result Type to point to the same type: " "GenericCastToPtr")); } TEST_F(ValidateConversion, GenericCastToPtrExplicitSuccess) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtrExplicit %f32ptr_func %ptr_gen Function %ptr_wg = OpGenericCastToPtrExplicit %f32ptr_wg %ptr_gen Workgroup %ptr_cwg = OpGenericCastToPtrExplicit %f32ptr_cwg %ptr_gen CrossWorkgroup )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, GenericCastToPtrExplicitWrongResultType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtrExplicit %f32 %ptr_gen Function )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected Result Type to be a pointer: GenericCastToPtrExplicit")); } TEST_F(ValidateConversion, GenericCastToPtrExplicitResultStorageClassDiffers) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtrExplicit %f32ptr_func %ptr_gen Workgroup )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected Result Type to be of target storage class: " "GenericCastToPtrExplicit")); } TEST_F(ValidateConversion, GenericCastToPtrExplicitWrongResultStorageClass) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtrExplicit %f32ptr_gen %ptr_gen Generic )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected target storage class to be Workgroup, " "CrossWorkgroup or Function: GenericCastToPtrExplicit")); } TEST_F(ValidateConversion, GenericCastToPtrExplicitWrongInputType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtrExplicit %f32ptr_func %f32_1 Function )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to be a pointer: GenericCastToPtrExplicit")); } TEST_F(ValidateConversion, GenericCastToPtrExplicitWrongInputStorageClass) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_func2 = OpGenericCastToPtrExplicit %f32ptr_func %ptr_func Function )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have storage class Generic: " "GenericCastToPtrExplicit")); } TEST_F(ValidateConversion, GenericCastToPtrExplicitPointToDifferentType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtrExplicit %u32ptr_func %ptr_gen Function )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input and Result Type to point to the same type: " "GenericCastToPtrExplicit")); } TEST_F(ValidateConversion, BitcastSuccess) { const std::string body = R"( %ptr = OpVariable %f32ptr_func Function %val1 = OpBitcast %u32 %ptr %val2 = OpBitcast %u64 %ptr %val3 = OpBitcast %f32ptr_func %u32_1 %val4 = OpBitcast %f32ptr_wg %u64_1 %val5 = OpBitcast %f32 %u32_1 %val6 = OpBitcast %f32vec2 %u32vec2_12 %val7 = OpBitcast %f32vec2 %u64_1 %val8 = OpBitcast %f64 %u32vec2_12 %val9 = OpBitcast %f32vec4 %f64vec2_12 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, BitcastInputHasNoType) { const std::string body = R"( %val = OpBitcast %u32 %f32 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Operand 4[%float] cannot be a " "type")); } TEST_F(ValidateConversion, BitcastWrongResultType) { const std::string body = R"( %val = OpBitcast %bool %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Result Type to be a pointer or int or float vector " "or scalar type: Bitcast")); } TEST_F(ValidateConversion, BitcastWrongInputType) { const std::string body = R"( %val = OpBitcast %u32 %true )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be a pointer or int or float vector " "or scalar: Bitcast")); } TEST_F(ValidateConversion, BitcastPtrWrongInputType) { const std::string body = R"( %val = OpBitcast %u32ptr_func %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to be a pointer or int scalar if Result Type " "is pointer: Bitcast")); } TEST_F(ValidateConversion, BitcastPtrWrongResultType) { const std::string body = R"( %val = OpBitcast %f32 %f32inp )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Pointer can only be converted to another pointer or int scalar: " "Bitcast")); } TEST_F(ValidateConversion, BitcastDifferentTotalBitWidth) { const std::string body = R"( %val = OpBitcast %f32 %u64_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected input to have the same total bit width as Result Type: " "Bitcast")); } TEST_F(ValidateConversion, ConvertUToPtrInputIsAType) { const std::string spirv = R"( OpCapability Addresses OpCapability Shader OpCapability Linkage OpMemoryModel Logical GLSL450 %int = OpTypeInt 32 0 %ptr_int = OpTypePointer Function %int %void = OpTypeVoid %voidfn = OpTypeFunction %void %func = OpFunction %void None %voidfn %entry = OpLabel %1 = OpConvertUToPtr %ptr_int %int OpReturn OpFunctionEnd )"; CompileSuccessfully(spirv); EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Operand 1[%uint] cannot be a " "type")); } } // namespace } // namespace val } // namespace spvtools