// RUN: %clang_cc1 -fsyntax-only %s -verify // C++'0x [namespace.memdef] p3: // Every name first declared in a namespace is a member of that namespace. If // a friend declaration in a non-local class first declares a class or // function the friend class or function is a member of the innermost // enclosing namespace. namespace N { struct S0 { friend struct F0; friend void f0(int); struct F0 member_func(); }; struct F0 { }; F0 f0() { return S0().member_func(); } } N::F0 f0_var = N::f0(); // Ensure we can handle attaching friend declarations to an enclosing namespace // with multiple contexts. namespace N { struct S1 { struct IS1; }; } namespace N { struct S1::IS1 { friend struct F1; friend void f1(int); struct F1 member_func(); }; struct F1 { }; F1 f1() { return S1::IS1().member_func(); } } N::F1 f1_var = N::f1(); // The name of the friend is not found by unqualified lookup (3.4.1) or by // qualified lookup (3.4.3) until a matching declaration is provided in that // namespace scope (either before or after the class definition granting // friendship). If a friend function is called, its name may be found by the // name lookup that considers functions from namespaces and classes // associated with the types of the function arguments (3.4.2). If the name // in a friend declaration is neither qualified nor a template-id and the // declaration is a function or an elaborated-type-specifier, the lookup to // determine whether the entity has been previously declared shall not // consider any scopes outside the innermost enclosing namespace. template<typename T> struct X0 { }; struct X1 { }; struct Y { template<typename T> union X0; template<typename T> friend union X0; union X1; friend union X1; }; namespace N { namespace M { template<typename T> class X; } } namespace N3 { class Y { template<typename T> friend class N::M::X; }; } // FIXME: Woefully inadequate for testing // Friends declared as template-ids aren't subject to the restriction // on innermost namespaces. // rdar://problem/8552377 namespace test5 { template <class T> void f(T); namespace ns { class A { friend void f<int>(int); static void foo(); // expected-note 2 {{declared private here}} }; // Note that this happens without instantiation. template <class T> void f(T) { A::foo(); // expected-error {{'foo' is a private member of 'test5::ns::A'}} } } template <class T> void f(T) { ns::A::foo(); // expected-error {{'foo' is a private member of 'test5::ns::A'}} } template void f<int>(int); template void f<long>(long); //expected-note {{instantiation}} } // rdar://13393749 namespace test6 { class A; namespace ns { class B { static void foo(); // expected-note {{implicitly declared private here}} friend union A; }; union A { void test() { B::foo(); } }; } class A { void test() { ns::B::foo(); // expected-error {{'foo' is a private member of 'test6::ns::B'}} } }; } // We seem to be following a correct interpretation with these, but // the standard could probably be a bit clearer. namespace test7a { namespace ns { class A; } using namespace ns; class B { static void foo(); friend class A; }; class ns::A { void test() { B::foo(); } }; } namespace test7b { namespace ns { class A; } using ns::A; class B { static void foo(); friend class A; }; class ns::A { void test() { B::foo(); } }; } namespace test7c { namespace ns1 { class A; } namespace ns2 { // ns1::A appears as if declared in test7c according to [namespace.udir]p2. // I think that means we aren't supposed to find it. using namespace ns1; class B { static void foo(); // expected-note {{implicitly declared private here}} friend class A; }; } class ns1::A { void test() { ns2::B::foo(); // expected-error {{'foo' is a private member of 'test7c::ns2::B'}} } }; } namespace test7d { namespace ns1 { class A; } namespace ns2 { // Honor the lexical context of a using-declaration, though. using ns1::A; class B { static void foo(); friend class A; }; } class ns1::A { void test() { ns2::B::foo(); } }; }