//===--- ModuleMap.cpp - Describe the layout of modules ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ModuleMap implementation, which describes the layout // of a module as it relates to headers. // //===----------------------------------------------------------------------===// #include "clang/Lex/ModuleMap.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/DiagnosticOptions.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TargetOptions.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/HeaderSearchOptions.h" #include "clang/Lex/LexDiagnostic.h" #include "clang/Lex/Lexer.h" #include "clang/Lex/LiteralSupport.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Host.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" #include <stdlib.h> #if defined(LLVM_ON_UNIX) #include <limits.h> #endif using namespace clang; Module::ExportDecl ModuleMap::resolveExport(Module *Mod, const Module::UnresolvedExportDecl &Unresolved, bool Complain) const { // We may have just a wildcard. if (Unresolved.Id.empty()) { assert(Unresolved.Wildcard && "Invalid unresolved export"); return Module::ExportDecl(nullptr, true); } // Resolve the module-id. Module *Context = resolveModuleId(Unresolved.Id, Mod, Complain); if (!Context) return Module::ExportDecl(); return Module::ExportDecl(Context, Unresolved.Wildcard); } Module *ModuleMap::resolveModuleId(const ModuleId &Id, Module *Mod, bool Complain) const { // Find the starting module. Module *Context = lookupModuleUnqualified(Id[0].first, Mod); if (!Context) { if (Complain) Diags.Report(Id[0].second, diag::err_mmap_missing_module_unqualified) << Id[0].first << Mod->getFullModuleName(); return nullptr; } // Dig into the module path. for (unsigned I = 1, N = Id.size(); I != N; ++I) { Module *Sub = lookupModuleQualified(Id[I].first, Context); if (!Sub) { if (Complain) Diags.Report(Id[I].second, diag::err_mmap_missing_module_qualified) << Id[I].first << Context->getFullModuleName() << SourceRange(Id[0].second, Id[I-1].second); return nullptr; } Context = Sub; } return Context; } ModuleMap::ModuleMap(SourceManager &SourceMgr, DiagnosticsEngine &Diags, const LangOptions &LangOpts, const TargetInfo *Target, HeaderSearch &HeaderInfo) : SourceMgr(SourceMgr), Diags(Diags), LangOpts(LangOpts), Target(Target), HeaderInfo(HeaderInfo), BuiltinIncludeDir(nullptr), SourceModule(nullptr), NumCreatedModules(0) { MMapLangOpts.LineComment = true; } ModuleMap::~ModuleMap() { for (auto &M : Modules) delete M.getValue(); } void ModuleMap::setTarget(const TargetInfo &Target) { assert((!this->Target || this->Target == &Target) && "Improper target override"); this->Target = &Target; } /// \brief "Sanitize" a filename so that it can be used as an identifier. static StringRef sanitizeFilenameAsIdentifier(StringRef Name, SmallVectorImpl<char> &Buffer) { if (Name.empty()) return Name; if (!isValidIdentifier(Name)) { // If we don't already have something with the form of an identifier, // create a buffer with the sanitized name. Buffer.clear(); if (isDigit(Name[0])) Buffer.push_back('_'); Buffer.reserve(Buffer.size() + Name.size()); for (unsigned I = 0, N = Name.size(); I != N; ++I) { if (isIdentifierBody(Name[I])) Buffer.push_back(Name[I]); else Buffer.push_back('_'); } Name = StringRef(Buffer.data(), Buffer.size()); } while (llvm::StringSwitch<bool>(Name) #define KEYWORD(Keyword,Conditions) .Case(#Keyword, true) #define ALIAS(Keyword, AliasOf, Conditions) .Case(Keyword, true) #include "clang/Basic/TokenKinds.def" .Default(false)) { if (Name.data() != Buffer.data()) Buffer.append(Name.begin(), Name.end()); Buffer.push_back('_'); Name = StringRef(Buffer.data(), Buffer.size()); } return Name; } /// \brief Determine whether the given file name is the name of a builtin /// header, supplied by Clang to replace, override, or augment existing system /// headers. static bool isBuiltinHeader(StringRef FileName) { return llvm::StringSwitch<bool>(FileName) .Case("float.h", true) .Case("iso646.h", true) .Case("limits.h", true) .Case("stdalign.h", true) .Case("stdarg.h", true) .Case("stdatomic.h", true) .Case("stdbool.h", true) .Case("stddef.h", true) .Case("stdint.h", true) .Case("tgmath.h", true) .Case("unwind.h", true) .Default(false); } ModuleMap::HeadersMap::iterator ModuleMap::findKnownHeader(const FileEntry *File) { HeadersMap::iterator Known = Headers.find(File); if (HeaderInfo.getHeaderSearchOpts().ImplicitModuleMaps && Known == Headers.end() && File->getDir() == BuiltinIncludeDir && isBuiltinHeader(llvm::sys::path::filename(File->getName()))) { HeaderInfo.loadTopLevelSystemModules(); return Headers.find(File); } return Known; } ModuleMap::KnownHeader ModuleMap::findHeaderInUmbrellaDirs(const FileEntry *File, SmallVectorImpl<const DirectoryEntry *> &IntermediateDirs) { if (UmbrellaDirs.empty()) return KnownHeader(); const DirectoryEntry *Dir = File->getDir(); assert(Dir && "file in no directory"); // Note: as an egregious but useful hack we use the real path here, because // frameworks moving from top-level frameworks to embedded frameworks tend // to be symlinked from the top-level location to the embedded location, // and we need to resolve lookups as if we had found the embedded location. StringRef DirName = SourceMgr.getFileManager().getCanonicalName(Dir); // Keep walking up the directory hierarchy, looking for a directory with // an umbrella header. do { auto KnownDir = UmbrellaDirs.find(Dir); if (KnownDir != UmbrellaDirs.end()) return KnownHeader(KnownDir->second, NormalHeader); IntermediateDirs.push_back(Dir); // Retrieve our parent path. DirName = llvm::sys::path::parent_path(DirName); if (DirName.empty()) break; // Resolve the parent path to a directory entry. Dir = SourceMgr.getFileManager().getDirectory(DirName); } while (Dir); return KnownHeader(); } static bool violatesPrivateInclude(Module *RequestingModule, const FileEntry *IncFileEnt, ModuleMap::KnownHeader Header) { #ifndef NDEBUG if (Header.getRole() & ModuleMap::PrivateHeader) { // Check for consistency between the module header role // as obtained from the lookup and as obtained from the module. // This check is not cheap, so enable it only for debugging. bool IsPrivate = false; SmallVectorImpl<Module::Header> *HeaderList[] = { &Header.getModule()->Headers[Module::HK_Private], &Header.getModule()->Headers[Module::HK_PrivateTextual]}; for (auto *Hs : HeaderList) IsPrivate |= std::find_if(Hs->begin(), Hs->end(), [&](const Module::Header &H) { return H.Entry == IncFileEnt; }) != Hs->end(); assert(IsPrivate && "inconsistent headers and roles"); } #endif return !Header.isAccessibleFrom(RequestingModule); } static Module *getTopLevelOrNull(Module *M) { return M ? M->getTopLevelModule() : nullptr; } void ModuleMap::diagnoseHeaderInclusion(Module *RequestingModule, bool RequestingModuleIsModuleInterface, SourceLocation FilenameLoc, StringRef Filename, const FileEntry *File) { // No errors for indirect modules. This may be a bit of a problem for modules // with no source files. if (getTopLevelOrNull(RequestingModule) != getTopLevelOrNull(SourceModule)) return; if (RequestingModule) resolveUses(RequestingModule, /*Complain=*/false); bool Excluded = false; Module *Private = nullptr; Module *NotUsed = nullptr; HeadersMap::iterator Known = findKnownHeader(File); if (Known != Headers.end()) { for (const KnownHeader &Header : Known->second) { // Remember private headers for later printing of a diagnostic. if (violatesPrivateInclude(RequestingModule, File, Header)) { Private = Header.getModule(); continue; } // If uses need to be specified explicitly, we are only allowed to return // modules that are explicitly used by the requesting module. if (RequestingModule && LangOpts.ModulesDeclUse && !RequestingModule->directlyUses(Header.getModule())) { NotUsed = Header.getModule(); continue; } // We have found a module that we can happily use. return; } Excluded = true; } // We have found a header, but it is private. if (Private) { Diags.Report(FilenameLoc, diag::warn_use_of_private_header_outside_module) << Filename; return; } // We have found a module, but we don't use it. if (NotUsed) { Diags.Report(FilenameLoc, diag::err_undeclared_use_of_module) << RequestingModule->getFullModuleName() << Filename; return; } if (Excluded || isHeaderInUmbrellaDirs(File)) return; // At this point, only non-modular includes remain. if (LangOpts.ModulesStrictDeclUse) { Diags.Report(FilenameLoc, diag::err_undeclared_use_of_module) << RequestingModule->getFullModuleName() << Filename; } else if (RequestingModule && RequestingModuleIsModuleInterface) { diag::kind DiagID = RequestingModule->getTopLevelModule()->IsFramework ? diag::warn_non_modular_include_in_framework_module : diag::warn_non_modular_include_in_module; Diags.Report(FilenameLoc, DiagID) << RequestingModule->getFullModuleName(); } } static bool isBetterKnownHeader(const ModuleMap::KnownHeader &New, const ModuleMap::KnownHeader &Old) { // Prefer available modules. if (New.getModule()->isAvailable() && !Old.getModule()->isAvailable()) return true; // Prefer a public header over a private header. if ((New.getRole() & ModuleMap::PrivateHeader) != (Old.getRole() & ModuleMap::PrivateHeader)) return !(New.getRole() & ModuleMap::PrivateHeader); // Prefer a non-textual header over a textual header. if ((New.getRole() & ModuleMap::TextualHeader) != (Old.getRole() & ModuleMap::TextualHeader)) return !(New.getRole() & ModuleMap::TextualHeader); // Don't have a reason to choose between these. Just keep the first one. return false; } ModuleMap::KnownHeader ModuleMap::findModuleForHeader(const FileEntry *File) { auto MakeResult = [&](ModuleMap::KnownHeader R) -> ModuleMap::KnownHeader { if (R.getRole() & ModuleMap::TextualHeader) return ModuleMap::KnownHeader(); return R; }; HeadersMap::iterator Known = findKnownHeader(File); if (Known != Headers.end()) { ModuleMap::KnownHeader Result; // Iterate over all modules that 'File' is part of to find the best fit. for (KnownHeader &H : Known->second) { // Prefer a header from the source module over all others. if (H.getModule()->getTopLevelModule() == SourceModule) return MakeResult(H); if (!Result || isBetterKnownHeader(H, Result)) Result = H; } return MakeResult(Result); } return MakeResult(findOrCreateModuleForHeaderInUmbrellaDir(File)); } ModuleMap::KnownHeader ModuleMap::findOrCreateModuleForHeaderInUmbrellaDir(const FileEntry *File) { assert(!Headers.count(File) && "already have a module for this header"); SmallVector<const DirectoryEntry *, 2> SkippedDirs; KnownHeader H = findHeaderInUmbrellaDirs(File, SkippedDirs); if (H) { Module *Result = H.getModule(); // Search up the module stack until we find a module with an umbrella // directory. Module *UmbrellaModule = Result; while (!UmbrellaModule->getUmbrellaDir() && UmbrellaModule->Parent) UmbrellaModule = UmbrellaModule->Parent; if (UmbrellaModule->InferSubmodules) { const FileEntry *UmbrellaModuleMap = getModuleMapFileForUniquing(UmbrellaModule); // Infer submodules for each of the directories we found between // the directory of the umbrella header and the directory where // the actual header is located. bool Explicit = UmbrellaModule->InferExplicitSubmodules; for (unsigned I = SkippedDirs.size(); I != 0; --I) { // Find or create the module that corresponds to this directory name. SmallString<32> NameBuf; StringRef Name = sanitizeFilenameAsIdentifier( llvm::sys::path::stem(SkippedDirs[I-1]->getName()), NameBuf); Result = findOrCreateModule(Name, Result, /*IsFramework=*/false, Explicit).first; InferredModuleAllowedBy[Result] = UmbrellaModuleMap; Result->IsInferred = true; // Associate the module and the directory. UmbrellaDirs[SkippedDirs[I-1]] = Result; // If inferred submodules export everything they import, add a // wildcard to the set of exports. if (UmbrellaModule->InferExportWildcard && Result->Exports.empty()) Result->Exports.push_back(Module::ExportDecl(nullptr, true)); } // Infer a submodule with the same name as this header file. SmallString<32> NameBuf; StringRef Name = sanitizeFilenameAsIdentifier( llvm::sys::path::stem(File->getName()), NameBuf); Result = findOrCreateModule(Name, Result, /*IsFramework=*/false, Explicit).first; InferredModuleAllowedBy[Result] = UmbrellaModuleMap; Result->IsInferred = true; Result->addTopHeader(File); // If inferred submodules export everything they import, add a // wildcard to the set of exports. if (UmbrellaModule->InferExportWildcard && Result->Exports.empty()) Result->Exports.push_back(Module::ExportDecl(nullptr, true)); } else { // Record each of the directories we stepped through as being part of // the module we found, since the umbrella header covers them all. for (unsigned I = 0, N = SkippedDirs.size(); I != N; ++I) UmbrellaDirs[SkippedDirs[I]] = Result; } KnownHeader Header(Result, NormalHeader); Headers[File].push_back(Header); return Header; } return KnownHeader(); } ArrayRef<ModuleMap::KnownHeader> ModuleMap::findAllModulesForHeader(const FileEntry *File) const { auto It = Headers.find(File); if (It == Headers.end()) return None; return It->second; } bool ModuleMap::isHeaderInUnavailableModule(const FileEntry *Header) const { return isHeaderUnavailableInModule(Header, nullptr); } bool ModuleMap::isHeaderUnavailableInModule(const FileEntry *Header, const Module *RequestingModule) const { HeadersMap::const_iterator Known = Headers.find(Header); if (Known != Headers.end()) { for (SmallVectorImpl<KnownHeader>::const_iterator I = Known->second.begin(), E = Known->second.end(); I != E; ++I) { if (I->isAvailable() && (!RequestingModule || I->getModule()->isSubModuleOf(RequestingModule))) return false; } return true; } const DirectoryEntry *Dir = Header->getDir(); SmallVector<const DirectoryEntry *, 2> SkippedDirs; StringRef DirName = Dir->getName(); auto IsUnavailable = [&](const Module *M) { return !M->isAvailable() && (!RequestingModule || M->isSubModuleOf(RequestingModule)); }; // Keep walking up the directory hierarchy, looking for a directory with // an umbrella header. do { llvm::DenseMap<const DirectoryEntry *, Module *>::const_iterator KnownDir = UmbrellaDirs.find(Dir); if (KnownDir != UmbrellaDirs.end()) { Module *Found = KnownDir->second; if (IsUnavailable(Found)) return true; // Search up the module stack until we find a module with an umbrella // directory. Module *UmbrellaModule = Found; while (!UmbrellaModule->getUmbrellaDir() && UmbrellaModule->Parent) UmbrellaModule = UmbrellaModule->Parent; if (UmbrellaModule->InferSubmodules) { for (unsigned I = SkippedDirs.size(); I != 0; --I) { // Find or create the module that corresponds to this directory name. SmallString<32> NameBuf; StringRef Name = sanitizeFilenameAsIdentifier( llvm::sys::path::stem(SkippedDirs[I-1]->getName()), NameBuf); Found = lookupModuleQualified(Name, Found); if (!Found) return false; if (IsUnavailable(Found)) return true; } // Infer a submodule with the same name as this header file. SmallString<32> NameBuf; StringRef Name = sanitizeFilenameAsIdentifier( llvm::sys::path::stem(Header->getName()), NameBuf); Found = lookupModuleQualified(Name, Found); if (!Found) return false; } return IsUnavailable(Found); } SkippedDirs.push_back(Dir); // Retrieve our parent path. DirName = llvm::sys::path::parent_path(DirName); if (DirName.empty()) break; // Resolve the parent path to a directory entry. Dir = SourceMgr.getFileManager().getDirectory(DirName); } while (Dir); return false; } Module *ModuleMap::findModule(StringRef Name) const { llvm::StringMap<Module *>::const_iterator Known = Modules.find(Name); if (Known != Modules.end()) return Known->getValue(); return nullptr; } Module *ModuleMap::lookupModuleUnqualified(StringRef Name, Module *Context) const { for(; Context; Context = Context->Parent) { if (Module *Sub = lookupModuleQualified(Name, Context)) return Sub; } return findModule(Name); } Module *ModuleMap::lookupModuleQualified(StringRef Name, Module *Context) const{ if (!Context) return findModule(Name); return Context->findSubmodule(Name); } std::pair<Module *, bool> ModuleMap::findOrCreateModule(StringRef Name, Module *Parent, bool IsFramework, bool IsExplicit) { // Try to find an existing module with this name. if (Module *Sub = lookupModuleQualified(Name, Parent)) return std::make_pair(Sub, false); // Create a new module with this name. Module *Result = new Module(Name, SourceLocation(), Parent, IsFramework, IsExplicit, NumCreatedModules++); if (!Parent) { if (LangOpts.CurrentModule == Name) SourceModule = Result; Modules[Name] = Result; } return std::make_pair(Result, true); } /// \brief For a framework module, infer the framework against which we /// should link. static void inferFrameworkLink(Module *Mod, const DirectoryEntry *FrameworkDir, FileManager &FileMgr) { assert(Mod->IsFramework && "Can only infer linking for framework modules"); assert(!Mod->isSubFramework() && "Can only infer linking for top-level frameworks"); SmallString<128> LibName; LibName += FrameworkDir->getName(); llvm::sys::path::append(LibName, Mod->Name); // The library name of a framework has more than one possible extension since // the introduction of the text-based dynamic library format. We need to check // for both before we give up. static const char *frameworkExtensions[] = {"", ".tbd"}; for (const auto *extension : frameworkExtensions) { llvm::sys::path::replace_extension(LibName, extension); if (FileMgr.getFile(LibName)) { Mod->LinkLibraries.push_back(Module::LinkLibrary(Mod->Name, /*IsFramework=*/true)); return; } } } Module *ModuleMap::inferFrameworkModule(const DirectoryEntry *FrameworkDir, bool IsSystem, Module *Parent) { Attributes Attrs; Attrs.IsSystem = IsSystem; return inferFrameworkModule(FrameworkDir, Attrs, Parent); } Module *ModuleMap::inferFrameworkModule(const DirectoryEntry *FrameworkDir, Attributes Attrs, Module *Parent) { // Note: as an egregious but useful hack we use the real path here, because // we might be looking at an embedded framework that symlinks out to a // top-level framework, and we need to infer as if we were naming the // top-level framework. StringRef FrameworkDirName = SourceMgr.getFileManager().getCanonicalName(FrameworkDir); // In case this is a case-insensitive filesystem, use the canonical // directory name as the ModuleName, since modules are case-sensitive. // FIXME: we should be able to give a fix-it hint for the correct spelling. SmallString<32> ModuleNameStorage; StringRef ModuleName = sanitizeFilenameAsIdentifier( llvm::sys::path::stem(FrameworkDirName), ModuleNameStorage); // Check whether we've already found this module. if (Module *Mod = lookupModuleQualified(ModuleName, Parent)) return Mod; FileManager &FileMgr = SourceMgr.getFileManager(); // If the framework has a parent path from which we're allowed to infer // a framework module, do so. const FileEntry *ModuleMapFile = nullptr; if (!Parent) { // Determine whether we're allowed to infer a module map. bool canInfer = false; if (llvm::sys::path::has_parent_path(FrameworkDirName)) { // Figure out the parent path. StringRef Parent = llvm::sys::path::parent_path(FrameworkDirName); if (const DirectoryEntry *ParentDir = FileMgr.getDirectory(Parent)) { // Check whether we have already looked into the parent directory // for a module map. llvm::DenseMap<const DirectoryEntry *, InferredDirectory>::const_iterator inferred = InferredDirectories.find(ParentDir); if (inferred == InferredDirectories.end()) { // We haven't looked here before. Load a module map, if there is // one. bool IsFrameworkDir = Parent.endswith(".framework"); if (const FileEntry *ModMapFile = HeaderInfo.lookupModuleMapFile(ParentDir, IsFrameworkDir)) { parseModuleMapFile(ModMapFile, Attrs.IsSystem, ParentDir); inferred = InferredDirectories.find(ParentDir); } if (inferred == InferredDirectories.end()) inferred = InferredDirectories.insert( std::make_pair(ParentDir, InferredDirectory())).first; } if (inferred->second.InferModules) { // We're allowed to infer for this directory, but make sure it's okay // to infer this particular module. StringRef Name = llvm::sys::path::stem(FrameworkDirName); canInfer = std::find(inferred->second.ExcludedModules.begin(), inferred->second.ExcludedModules.end(), Name) == inferred->second.ExcludedModules.end(); Attrs.IsSystem |= inferred->second.Attrs.IsSystem; Attrs.IsExternC |= inferred->second.Attrs.IsExternC; Attrs.IsExhaustive |= inferred->second.Attrs.IsExhaustive; ModuleMapFile = inferred->second.ModuleMapFile; } } } // If we're not allowed to infer a framework module, don't. if (!canInfer) return nullptr; } else ModuleMapFile = getModuleMapFileForUniquing(Parent); // Look for an umbrella header. SmallString<128> UmbrellaName = StringRef(FrameworkDir->getName()); llvm::sys::path::append(UmbrellaName, "Headers", ModuleName + ".h"); const FileEntry *UmbrellaHeader = FileMgr.getFile(UmbrellaName); // FIXME: If there's no umbrella header, we could probably scan the // framework to load *everything*. But, it's not clear that this is a good // idea. if (!UmbrellaHeader) return nullptr; Module *Result = new Module(ModuleName, SourceLocation(), Parent, /*IsFramework=*/true, /*IsExplicit=*/false, NumCreatedModules++); InferredModuleAllowedBy[Result] = ModuleMapFile; Result->IsInferred = true; if (!Parent) { if (LangOpts.CurrentModule == ModuleName) SourceModule = Result; Modules[ModuleName] = Result; } Result->IsSystem |= Attrs.IsSystem; Result->IsExternC |= Attrs.IsExternC; Result->ConfigMacrosExhaustive |= Attrs.IsExhaustive; Result->Directory = FrameworkDir; // umbrella header "umbrella-header-name" // // The "Headers/" component of the name is implied because this is // a framework module. setUmbrellaHeader(Result, UmbrellaHeader, ModuleName + ".h"); // export * Result->Exports.push_back(Module::ExportDecl(nullptr, true)); // module * { export * } Result->InferSubmodules = true; Result->InferExportWildcard = true; // Look for subframeworks. std::error_code EC; SmallString<128> SubframeworksDirName = StringRef(FrameworkDir->getName()); llvm::sys::path::append(SubframeworksDirName, "Frameworks"); llvm::sys::path::native(SubframeworksDirName); vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem(); for (vfs::directory_iterator Dir = FS.dir_begin(SubframeworksDirName, EC), DirEnd; Dir != DirEnd && !EC; Dir.increment(EC)) { if (!StringRef(Dir->getName()).endswith(".framework")) continue; if (const DirectoryEntry *SubframeworkDir = FileMgr.getDirectory(Dir->getName())) { // Note: as an egregious but useful hack, we use the real path here and // check whether it is actually a subdirectory of the parent directory. // This will not be the case if the 'subframework' is actually a symlink // out to a top-level framework. StringRef SubframeworkDirName = FileMgr.getCanonicalName(SubframeworkDir); bool FoundParent = false; do { // Get the parent directory name. SubframeworkDirName = llvm::sys::path::parent_path(SubframeworkDirName); if (SubframeworkDirName.empty()) break; if (FileMgr.getDirectory(SubframeworkDirName) == FrameworkDir) { FoundParent = true; break; } } while (true); if (!FoundParent) continue; // FIXME: Do we want to warn about subframeworks without umbrella headers? inferFrameworkModule(SubframeworkDir, Attrs, Result); } } // If the module is a top-level framework, automatically link against the // framework. if (!Result->isSubFramework()) { inferFrameworkLink(Result, FrameworkDir, FileMgr); } return Result; } void ModuleMap::setUmbrellaHeader(Module *Mod, const FileEntry *UmbrellaHeader, Twine NameAsWritten) { Headers[UmbrellaHeader].push_back(KnownHeader(Mod, NormalHeader)); Mod->Umbrella = UmbrellaHeader; Mod->UmbrellaAsWritten = NameAsWritten.str(); UmbrellaDirs[UmbrellaHeader->getDir()] = Mod; // Notify callbacks that we just added a new header. for (const auto &Cb : Callbacks) Cb->moduleMapAddUmbrellaHeader(&SourceMgr.getFileManager(), UmbrellaHeader); } void ModuleMap::setUmbrellaDir(Module *Mod, const DirectoryEntry *UmbrellaDir, Twine NameAsWritten) { Mod->Umbrella = UmbrellaDir; Mod->UmbrellaAsWritten = NameAsWritten.str(); UmbrellaDirs[UmbrellaDir] = Mod; } static Module::HeaderKind headerRoleToKind(ModuleMap::ModuleHeaderRole Role) { switch ((int)Role) { default: llvm_unreachable("unknown header role"); case ModuleMap::NormalHeader: return Module::HK_Normal; case ModuleMap::PrivateHeader: return Module::HK_Private; case ModuleMap::TextualHeader: return Module::HK_Textual; case ModuleMap::PrivateHeader | ModuleMap::TextualHeader: return Module::HK_PrivateTextual; } } void ModuleMap::addHeader(Module *Mod, Module::Header Header, ModuleHeaderRole Role, bool Imported) { KnownHeader KH(Mod, Role); // Only add each header to the headers list once. // FIXME: Should we diagnose if a header is listed twice in the // same module definition? auto &HeaderList = Headers[Header.Entry]; for (auto H : HeaderList) if (H == KH) return; HeaderList.push_back(KH); Mod->Headers[headerRoleToKind(Role)].push_back(std::move(Header)); bool isCompilingModuleHeader = LangOpts.CompilingModule && Mod->getTopLevelModule() == SourceModule; if (!Imported || isCompilingModuleHeader) { // When we import HeaderFileInfo, the external source is expected to // set the isModuleHeader flag itself. HeaderInfo.MarkFileModuleHeader(Header.Entry, Role, isCompilingModuleHeader); } // Notify callbacks that we just added a new header. for (const auto &Cb : Callbacks) Cb->moduleMapAddHeader(Header.Entry->getName()); } void ModuleMap::excludeHeader(Module *Mod, Module::Header Header) { // Add this as a known header so we won't implicitly add it to any // umbrella directory module. // FIXME: Should we only exclude it from umbrella modules within the // specified module? (void) Headers[Header.Entry]; Mod->Headers[Module::HK_Excluded].push_back(std::move(Header)); } const FileEntry * ModuleMap::getContainingModuleMapFile(const Module *Module) const { if (Module->DefinitionLoc.isInvalid()) return nullptr; return SourceMgr.getFileEntryForID( SourceMgr.getFileID(Module->DefinitionLoc)); } const FileEntry *ModuleMap::getModuleMapFileForUniquing(const Module *M) const { if (M->IsInferred) { assert(InferredModuleAllowedBy.count(M) && "missing inferred module map"); return InferredModuleAllowedBy.find(M)->second; } return getContainingModuleMapFile(M); } void ModuleMap::setInferredModuleAllowedBy(Module *M, const FileEntry *ModMap) { assert(M->IsInferred && "module not inferred"); InferredModuleAllowedBy[M] = ModMap; } LLVM_DUMP_METHOD void ModuleMap::dump() { llvm::errs() << "Modules:"; for (llvm::StringMap<Module *>::iterator M = Modules.begin(), MEnd = Modules.end(); M != MEnd; ++M) M->getValue()->print(llvm::errs(), 2); llvm::errs() << "Headers:"; for (HeadersMap::iterator H = Headers.begin(), HEnd = Headers.end(); H != HEnd; ++H) { llvm::errs() << " \"" << H->first->getName() << "\" -> "; for (SmallVectorImpl<KnownHeader>::const_iterator I = H->second.begin(), E = H->second.end(); I != E; ++I) { if (I != H->second.begin()) llvm::errs() << ","; llvm::errs() << I->getModule()->getFullModuleName(); } llvm::errs() << "\n"; } } bool ModuleMap::resolveExports(Module *Mod, bool Complain) { auto Unresolved = std::move(Mod->UnresolvedExports); Mod->UnresolvedExports.clear(); for (auto &UE : Unresolved) { Module::ExportDecl Export = resolveExport(Mod, UE, Complain); if (Export.getPointer() || Export.getInt()) Mod->Exports.push_back(Export); else Mod->UnresolvedExports.push_back(UE); } return !Mod->UnresolvedExports.empty(); } bool ModuleMap::resolveUses(Module *Mod, bool Complain) { auto Unresolved = std::move(Mod->UnresolvedDirectUses); Mod->UnresolvedDirectUses.clear(); for (auto &UDU : Unresolved) { Module *DirectUse = resolveModuleId(UDU, Mod, Complain); if (DirectUse) Mod->DirectUses.push_back(DirectUse); else Mod->UnresolvedDirectUses.push_back(UDU); } return !Mod->UnresolvedDirectUses.empty(); } bool ModuleMap::resolveConflicts(Module *Mod, bool Complain) { auto Unresolved = std::move(Mod->UnresolvedConflicts); Mod->UnresolvedConflicts.clear(); for (auto &UC : Unresolved) { if (Module *OtherMod = resolveModuleId(UC.Id, Mod, Complain)) { Module::Conflict Conflict; Conflict.Other = OtherMod; Conflict.Message = UC.Message; Mod->Conflicts.push_back(Conflict); } else Mod->UnresolvedConflicts.push_back(UC); } return !Mod->UnresolvedConflicts.empty(); } Module *ModuleMap::inferModuleFromLocation(FullSourceLoc Loc) { if (Loc.isInvalid()) return nullptr; if (UmbrellaDirs.empty() && Headers.empty()) return nullptr; // Use the expansion location to determine which module we're in. FullSourceLoc ExpansionLoc = Loc.getExpansionLoc(); if (!ExpansionLoc.isFileID()) return nullptr; const SourceManager &SrcMgr = Loc.getManager(); FileID ExpansionFileID = ExpansionLoc.getFileID(); while (const FileEntry *ExpansionFile = SrcMgr.getFileEntryForID(ExpansionFileID)) { // Find the module that owns this header (if any). if (Module *Mod = findModuleForHeader(ExpansionFile).getModule()) return Mod; // No module owns this header, so look up the inclusion chain to see if // any included header has an associated module. SourceLocation IncludeLoc = SrcMgr.getIncludeLoc(ExpansionFileID); if (IncludeLoc.isInvalid()) return nullptr; ExpansionFileID = SrcMgr.getFileID(IncludeLoc); } return nullptr; } //----------------------------------------------------------------------------// // Module map file parser //----------------------------------------------------------------------------// namespace clang { /// \brief A token in a module map file. struct MMToken { enum TokenKind { Comma, ConfigMacros, Conflict, EndOfFile, HeaderKeyword, Identifier, Exclaim, ExcludeKeyword, ExplicitKeyword, ExportKeyword, ExternKeyword, FrameworkKeyword, LinkKeyword, ModuleKeyword, Period, PrivateKeyword, UmbrellaKeyword, UseKeyword, RequiresKeyword, Star, StringLiteral, TextualKeyword, LBrace, RBrace, LSquare, RSquare } Kind; unsigned Location; unsigned StringLength; const char *StringData; void clear() { Kind = EndOfFile; Location = 0; StringLength = 0; StringData = nullptr; } bool is(TokenKind K) const { return Kind == K; } SourceLocation getLocation() const { return SourceLocation::getFromRawEncoding(Location); } StringRef getString() const { return StringRef(StringData, StringLength); } }; class ModuleMapParser { Lexer &L; SourceManager &SourceMgr; /// \brief Default target information, used only for string literal /// parsing. const TargetInfo *Target; DiagnosticsEngine &Diags; ModuleMap ⤅ /// \brief The current module map file. const FileEntry *ModuleMapFile; /// \brief The directory that file names in this module map file should /// be resolved relative to. const DirectoryEntry *Directory; /// \brief The directory containing Clang-supplied headers. const DirectoryEntry *BuiltinIncludeDir; /// \brief Whether this module map is in a system header directory. bool IsSystem; /// \brief Whether an error occurred. bool HadError; /// \brief Stores string data for the various string literals referenced /// during parsing. llvm::BumpPtrAllocator StringData; /// \brief The current token. MMToken Tok; /// \brief The active module. Module *ActiveModule; /// \brief Whether a module uses the 'requires excluded' hack to mark its /// contents as 'textual'. /// /// On older Darwin SDK versions, 'requires excluded' is used to mark the /// contents of the Darwin.C.excluded (assert.h) and Tcl.Private modules as /// non-modular headers. For backwards compatibility, we continue to /// support this idiom for just these modules, and map the headers to /// 'textual' to match the original intent. llvm::SmallPtrSet<Module *, 2> UsesRequiresExcludedHack; /// \brief Consume the current token and return its location. SourceLocation consumeToken(); /// \brief Skip tokens until we reach the a token with the given kind /// (or the end of the file). void skipUntil(MMToken::TokenKind K); typedef SmallVector<std::pair<std::string, SourceLocation>, 2> ModuleId; bool parseModuleId(ModuleId &Id); void parseModuleDecl(); void parseExternModuleDecl(); void parseRequiresDecl(); void parseHeaderDecl(clang::MMToken::TokenKind, SourceLocation LeadingLoc); void parseUmbrellaDirDecl(SourceLocation UmbrellaLoc); void parseExportDecl(); void parseUseDecl(); void parseLinkDecl(); void parseConfigMacros(); void parseConflict(); void parseInferredModuleDecl(bool Framework, bool Explicit); typedef ModuleMap::Attributes Attributes; bool parseOptionalAttributes(Attributes &Attrs); public: explicit ModuleMapParser(Lexer &L, SourceManager &SourceMgr, const TargetInfo *Target, DiagnosticsEngine &Diags, ModuleMap &Map, const FileEntry *ModuleMapFile, const DirectoryEntry *Directory, const DirectoryEntry *BuiltinIncludeDir, bool IsSystem) : L(L), SourceMgr(SourceMgr), Target(Target), Diags(Diags), Map(Map), ModuleMapFile(ModuleMapFile), Directory(Directory), BuiltinIncludeDir(BuiltinIncludeDir), IsSystem(IsSystem), HadError(false), ActiveModule(nullptr) { Tok.clear(); consumeToken(); } bool parseModuleMapFile(); }; } SourceLocation ModuleMapParser::consumeToken() { retry: SourceLocation Result = Tok.getLocation(); Tok.clear(); Token LToken; L.LexFromRawLexer(LToken); Tok.Location = LToken.getLocation().getRawEncoding(); switch (LToken.getKind()) { case tok::raw_identifier: { StringRef RI = LToken.getRawIdentifier(); Tok.StringData = RI.data(); Tok.StringLength = RI.size(); Tok.Kind = llvm::StringSwitch<MMToken::TokenKind>(RI) .Case("config_macros", MMToken::ConfigMacros) .Case("conflict", MMToken::Conflict) .Case("exclude", MMToken::ExcludeKeyword) .Case("explicit", MMToken::ExplicitKeyword) .Case("export", MMToken::ExportKeyword) .Case("extern", MMToken::ExternKeyword) .Case("framework", MMToken::FrameworkKeyword) .Case("header", MMToken::HeaderKeyword) .Case("link", MMToken::LinkKeyword) .Case("module", MMToken::ModuleKeyword) .Case("private", MMToken::PrivateKeyword) .Case("requires", MMToken::RequiresKeyword) .Case("textual", MMToken::TextualKeyword) .Case("umbrella", MMToken::UmbrellaKeyword) .Case("use", MMToken::UseKeyword) .Default(MMToken::Identifier); break; } case tok::comma: Tok.Kind = MMToken::Comma; break; case tok::eof: Tok.Kind = MMToken::EndOfFile; break; case tok::l_brace: Tok.Kind = MMToken::LBrace; break; case tok::l_square: Tok.Kind = MMToken::LSquare; break; case tok::period: Tok.Kind = MMToken::Period; break; case tok::r_brace: Tok.Kind = MMToken::RBrace; break; case tok::r_square: Tok.Kind = MMToken::RSquare; break; case tok::star: Tok.Kind = MMToken::Star; break; case tok::exclaim: Tok.Kind = MMToken::Exclaim; break; case tok::string_literal: { if (LToken.hasUDSuffix()) { Diags.Report(LToken.getLocation(), diag::err_invalid_string_udl); HadError = true; goto retry; } // Parse the string literal. LangOptions LangOpts; StringLiteralParser StringLiteral(LToken, SourceMgr, LangOpts, *Target); if (StringLiteral.hadError) goto retry; // Copy the string literal into our string data allocator. unsigned Length = StringLiteral.GetStringLength(); char *Saved = StringData.Allocate<char>(Length + 1); memcpy(Saved, StringLiteral.GetString().data(), Length); Saved[Length] = 0; // Form the token. Tok.Kind = MMToken::StringLiteral; Tok.StringData = Saved; Tok.StringLength = Length; break; } case tok::comment: goto retry; default: Diags.Report(LToken.getLocation(), diag::err_mmap_unknown_token); HadError = true; goto retry; } return Result; } void ModuleMapParser::skipUntil(MMToken::TokenKind K) { unsigned braceDepth = 0; unsigned squareDepth = 0; do { switch (Tok.Kind) { case MMToken::EndOfFile: return; case MMToken::LBrace: if (Tok.is(K) && braceDepth == 0 && squareDepth == 0) return; ++braceDepth; break; case MMToken::LSquare: if (Tok.is(K) && braceDepth == 0 && squareDepth == 0) return; ++squareDepth; break; case MMToken::RBrace: if (braceDepth > 0) --braceDepth; else if (Tok.is(K)) return; break; case MMToken::RSquare: if (squareDepth > 0) --squareDepth; else if (Tok.is(K)) return; break; default: if (braceDepth == 0 && squareDepth == 0 && Tok.is(K)) return; break; } consumeToken(); } while (true); } /// \brief Parse a module-id. /// /// module-id: /// identifier /// identifier '.' module-id /// /// \returns true if an error occurred, false otherwise. bool ModuleMapParser::parseModuleId(ModuleId &Id) { Id.clear(); do { if (Tok.is(MMToken::Identifier) || Tok.is(MMToken::StringLiteral)) { Id.push_back(std::make_pair(Tok.getString(), Tok.getLocation())); consumeToken(); } else { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module_name); return true; } if (!Tok.is(MMToken::Period)) break; consumeToken(); } while (true); return false; } namespace { /// \brief Enumerates the known attributes. enum AttributeKind { /// \brief An unknown attribute. AT_unknown, /// \brief The 'system' attribute. AT_system, /// \brief The 'extern_c' attribute. AT_extern_c, /// \brief The 'exhaustive' attribute. AT_exhaustive }; } /// \brief Parse a module declaration. /// /// module-declaration: /// 'extern' 'module' module-id string-literal /// 'explicit'[opt] 'framework'[opt] 'module' module-id attributes[opt] /// { module-member* } /// /// module-member: /// requires-declaration /// header-declaration /// submodule-declaration /// export-declaration /// link-declaration /// /// submodule-declaration: /// module-declaration /// inferred-submodule-declaration void ModuleMapParser::parseModuleDecl() { assert(Tok.is(MMToken::ExplicitKeyword) || Tok.is(MMToken::ModuleKeyword) || Tok.is(MMToken::FrameworkKeyword) || Tok.is(MMToken::ExternKeyword)); if (Tok.is(MMToken::ExternKeyword)) { parseExternModuleDecl(); return; } // Parse 'explicit' or 'framework' keyword, if present. SourceLocation ExplicitLoc; bool Explicit = false; bool Framework = false; // Parse 'explicit' keyword, if present. if (Tok.is(MMToken::ExplicitKeyword)) { ExplicitLoc = consumeToken(); Explicit = true; } // Parse 'framework' keyword, if present. if (Tok.is(MMToken::FrameworkKeyword)) { consumeToken(); Framework = true; } // Parse 'module' keyword. if (!Tok.is(MMToken::ModuleKeyword)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module); consumeToken(); HadError = true; return; } consumeToken(); // 'module' keyword // If we have a wildcard for the module name, this is an inferred submodule. // Parse it. if (Tok.is(MMToken::Star)) return parseInferredModuleDecl(Framework, Explicit); // Parse the module name. ModuleId Id; if (parseModuleId(Id)) { HadError = true; return; } if (ActiveModule) { if (Id.size() > 1) { Diags.Report(Id.front().second, diag::err_mmap_nested_submodule_id) << SourceRange(Id.front().second, Id.back().second); HadError = true; return; } } else if (Id.size() == 1 && Explicit) { // Top-level modules can't be explicit. Diags.Report(ExplicitLoc, diag::err_mmap_explicit_top_level); Explicit = false; ExplicitLoc = SourceLocation(); HadError = true; } Module *PreviousActiveModule = ActiveModule; if (Id.size() > 1) { // This module map defines a submodule. Go find the module of which it // is a submodule. ActiveModule = nullptr; const Module *TopLevelModule = nullptr; for (unsigned I = 0, N = Id.size() - 1; I != N; ++I) { if (Module *Next = Map.lookupModuleQualified(Id[I].first, ActiveModule)) { if (I == 0) TopLevelModule = Next; ActiveModule = Next; continue; } if (ActiveModule) { Diags.Report(Id[I].second, diag::err_mmap_missing_module_qualified) << Id[I].first << ActiveModule->getTopLevelModule()->getFullModuleName(); } else { Diags.Report(Id[I].second, diag::err_mmap_expected_module_name); } HadError = true; return; } if (ModuleMapFile != Map.getContainingModuleMapFile(TopLevelModule)) { assert(ModuleMapFile != Map.getModuleMapFileForUniquing(TopLevelModule) && "submodule defined in same file as 'module *' that allowed its " "top-level module"); Map.addAdditionalModuleMapFile(TopLevelModule, ModuleMapFile); } } StringRef ModuleName = Id.back().first; SourceLocation ModuleNameLoc = Id.back().second; // Parse the optional attribute list. Attributes Attrs; if (parseOptionalAttributes(Attrs)) return; // Parse the opening brace. if (!Tok.is(MMToken::LBrace)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_lbrace) << ModuleName; HadError = true; return; } SourceLocation LBraceLoc = consumeToken(); // Determine whether this (sub)module has already been defined. if (Module *Existing = Map.lookupModuleQualified(ModuleName, ActiveModule)) { if (Existing->DefinitionLoc.isInvalid() && !ActiveModule) { // Skip the module definition. skipUntil(MMToken::RBrace); if (Tok.is(MMToken::RBrace)) consumeToken(); else { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace); Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match); HadError = true; } return; } Diags.Report(ModuleNameLoc, diag::err_mmap_module_redefinition) << ModuleName; Diags.Report(Existing->DefinitionLoc, diag::note_mmap_prev_definition); // Skip the module definition. skipUntil(MMToken::RBrace); if (Tok.is(MMToken::RBrace)) consumeToken(); HadError = true; return; } // Start defining this module. ActiveModule = Map.findOrCreateModule(ModuleName, ActiveModule, Framework, Explicit).first; ActiveModule->DefinitionLoc = ModuleNameLoc; if (Attrs.IsSystem || IsSystem) ActiveModule->IsSystem = true; if (Attrs.IsExternC) ActiveModule->IsExternC = true; ActiveModule->Directory = Directory; bool Done = false; do { switch (Tok.Kind) { case MMToken::EndOfFile: case MMToken::RBrace: Done = true; break; case MMToken::ConfigMacros: parseConfigMacros(); break; case MMToken::Conflict: parseConflict(); break; case MMToken::ExplicitKeyword: case MMToken::ExternKeyword: case MMToken::FrameworkKeyword: case MMToken::ModuleKeyword: parseModuleDecl(); break; case MMToken::ExportKeyword: parseExportDecl(); break; case MMToken::UseKeyword: parseUseDecl(); break; case MMToken::RequiresKeyword: parseRequiresDecl(); break; case MMToken::TextualKeyword: parseHeaderDecl(MMToken::TextualKeyword, consumeToken()); break; case MMToken::UmbrellaKeyword: { SourceLocation UmbrellaLoc = consumeToken(); if (Tok.is(MMToken::HeaderKeyword)) parseHeaderDecl(MMToken::UmbrellaKeyword, UmbrellaLoc); else parseUmbrellaDirDecl(UmbrellaLoc); break; } case MMToken::ExcludeKeyword: parseHeaderDecl(MMToken::ExcludeKeyword, consumeToken()); break; case MMToken::PrivateKeyword: parseHeaderDecl(MMToken::PrivateKeyword, consumeToken()); break; case MMToken::HeaderKeyword: parseHeaderDecl(MMToken::HeaderKeyword, consumeToken()); break; case MMToken::LinkKeyword: parseLinkDecl(); break; default: Diags.Report(Tok.getLocation(), diag::err_mmap_expected_member); consumeToken(); break; } } while (!Done); if (Tok.is(MMToken::RBrace)) consumeToken(); else { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace); Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match); HadError = true; } // If the active module is a top-level framework, and there are no link // libraries, automatically link against the framework. if (ActiveModule->IsFramework && !ActiveModule->isSubFramework() && ActiveModule->LinkLibraries.empty()) { inferFrameworkLink(ActiveModule, Directory, SourceMgr.getFileManager()); } // If the module meets all requirements but is still unavailable, mark the // whole tree as unavailable to prevent it from building. if (!ActiveModule->IsAvailable && !ActiveModule->IsMissingRequirement && ActiveModule->Parent) { ActiveModule->getTopLevelModule()->markUnavailable(); ActiveModule->getTopLevelModule()->MissingHeaders.append( ActiveModule->MissingHeaders.begin(), ActiveModule->MissingHeaders.end()); } // We're done parsing this module. Pop back to the previous module. ActiveModule = PreviousActiveModule; } /// \brief Parse an extern module declaration. /// /// extern module-declaration: /// 'extern' 'module' module-id string-literal void ModuleMapParser::parseExternModuleDecl() { assert(Tok.is(MMToken::ExternKeyword)); SourceLocation ExternLoc = consumeToken(); // 'extern' keyword // Parse 'module' keyword. if (!Tok.is(MMToken::ModuleKeyword)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module); consumeToken(); HadError = true; return; } consumeToken(); // 'module' keyword // Parse the module name. ModuleId Id; if (parseModuleId(Id)) { HadError = true; return; } // Parse the referenced module map file name. if (!Tok.is(MMToken::StringLiteral)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_mmap_file); HadError = true; return; } std::string FileName = Tok.getString(); consumeToken(); // filename StringRef FileNameRef = FileName; SmallString<128> ModuleMapFileName; if (llvm::sys::path::is_relative(FileNameRef)) { ModuleMapFileName += Directory->getName(); llvm::sys::path::append(ModuleMapFileName, FileName); FileNameRef = ModuleMapFileName; } if (const FileEntry *File = SourceMgr.getFileManager().getFile(FileNameRef)) Map.parseModuleMapFile( File, /*IsSystem=*/false, Map.HeaderInfo.getHeaderSearchOpts().ModuleMapFileHomeIsCwd ? Directory : File->getDir(), ExternLoc); } /// Whether to add the requirement \p Feature to the module \p M. /// /// This preserves backwards compatibility for two hacks in the Darwin system /// module map files: /// /// 1. The use of 'requires excluded' to make headers non-modular, which /// should really be mapped to 'textual' now that we have this feature. We /// drop the 'excluded' requirement, and set \p IsRequiresExcludedHack to /// true. Later, this bit will be used to map all the headers inside this /// module to 'textual'. /// /// This affects Darwin.C.excluded (for assert.h) and Tcl.Private. /// /// 2. Removes a bogus cplusplus requirement from IOKit.avc. This requirement /// was never correct and causes issues now that we check it, so drop it. static bool shouldAddRequirement(Module *M, StringRef Feature, bool &IsRequiresExcludedHack) { static const StringRef DarwinCExcluded[] = {"Darwin", "C", "excluded"}; static const StringRef TclPrivate[] = {"Tcl", "Private"}; static const StringRef IOKitAVC[] = {"IOKit", "avc"}; if (Feature == "excluded" && (M->fullModuleNameIs(DarwinCExcluded) || M->fullModuleNameIs(TclPrivate))) { IsRequiresExcludedHack = true; return false; } else if (Feature == "cplusplus" && M->fullModuleNameIs(IOKitAVC)) { return false; } return true; } /// \brief Parse a requires declaration. /// /// requires-declaration: /// 'requires' feature-list /// /// feature-list: /// feature ',' feature-list /// feature /// /// feature: /// '!'[opt] identifier void ModuleMapParser::parseRequiresDecl() { assert(Tok.is(MMToken::RequiresKeyword)); // Parse 'requires' keyword. consumeToken(); // Parse the feature-list. do { bool RequiredState = true; if (Tok.is(MMToken::Exclaim)) { RequiredState = false; consumeToken(); } if (!Tok.is(MMToken::Identifier)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_feature); HadError = true; return; } // Consume the feature name. std::string Feature = Tok.getString(); consumeToken(); bool IsRequiresExcludedHack = false; bool ShouldAddRequirement = shouldAddRequirement(ActiveModule, Feature, IsRequiresExcludedHack); if (IsRequiresExcludedHack) UsesRequiresExcludedHack.insert(ActiveModule); if (ShouldAddRequirement) { // Add this feature. ActiveModule->addRequirement(Feature, RequiredState, Map.LangOpts, *Map.Target); } if (!Tok.is(MMToken::Comma)) break; // Consume the comma. consumeToken(); } while (true); } /// \brief Append to \p Paths the set of paths needed to get to the /// subframework in which the given module lives. static void appendSubframeworkPaths(Module *Mod, SmallVectorImpl<char> &Path) { // Collect the framework names from the given module to the top-level module. SmallVector<StringRef, 2> Paths; for (; Mod; Mod = Mod->Parent) { if (Mod->IsFramework) Paths.push_back(Mod->Name); } if (Paths.empty()) return; // Add Frameworks/Name.framework for each subframework. for (unsigned I = Paths.size() - 1; I != 0; --I) llvm::sys::path::append(Path, "Frameworks", Paths[I-1] + ".framework"); } /// \brief Parse a header declaration. /// /// header-declaration: /// 'textual'[opt] 'header' string-literal /// 'private' 'textual'[opt] 'header' string-literal /// 'exclude' 'header' string-literal /// 'umbrella' 'header' string-literal /// /// FIXME: Support 'private textual header'. void ModuleMapParser::parseHeaderDecl(MMToken::TokenKind LeadingToken, SourceLocation LeadingLoc) { // We've already consumed the first token. ModuleMap::ModuleHeaderRole Role = ModuleMap::NormalHeader; if (LeadingToken == MMToken::PrivateKeyword) { Role = ModuleMap::PrivateHeader; // 'private' may optionally be followed by 'textual'. if (Tok.is(MMToken::TextualKeyword)) { LeadingToken = Tok.Kind; consumeToken(); } } if (LeadingToken == MMToken::TextualKeyword) Role = ModuleMap::ModuleHeaderRole(Role | ModuleMap::TextualHeader); if (UsesRequiresExcludedHack.count(ActiveModule)) { // Mark this header 'textual' (see doc comment for // Module::UsesRequiresExcludedHack). Role = ModuleMap::ModuleHeaderRole(Role | ModuleMap::TextualHeader); } if (LeadingToken != MMToken::HeaderKeyword) { if (!Tok.is(MMToken::HeaderKeyword)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_header) << (LeadingToken == MMToken::PrivateKeyword ? "private" : LeadingToken == MMToken::ExcludeKeyword ? "exclude" : LeadingToken == MMToken::TextualKeyword ? "textual" : "umbrella"); return; } consumeToken(); } // Parse the header name. if (!Tok.is(MMToken::StringLiteral)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_header) << "header"; HadError = true; return; } Module::UnresolvedHeaderDirective Header; Header.FileName = Tok.getString(); Header.FileNameLoc = consumeToken(); // Check whether we already have an umbrella. if (LeadingToken == MMToken::UmbrellaKeyword && ActiveModule->Umbrella) { Diags.Report(Header.FileNameLoc, diag::err_mmap_umbrella_clash) << ActiveModule->getFullModuleName(); HadError = true; return; } // Look for this file. const FileEntry *File = nullptr; const FileEntry *BuiltinFile = nullptr; SmallString<128> RelativePathName; if (llvm::sys::path::is_absolute(Header.FileName)) { RelativePathName = Header.FileName; File = SourceMgr.getFileManager().getFile(RelativePathName); } else { // Search for the header file within the search directory. SmallString<128> FullPathName(Directory->getName()); unsigned FullPathLength = FullPathName.size(); if (ActiveModule->isPartOfFramework()) { appendSubframeworkPaths(ActiveModule, RelativePathName); // Check whether this file is in the public headers. llvm::sys::path::append(RelativePathName, "Headers", Header.FileName); llvm::sys::path::append(FullPathName, RelativePathName); File = SourceMgr.getFileManager().getFile(FullPathName); if (!File) { // Check whether this file is in the private headers. // FIXME: Should we retain the subframework paths here? RelativePathName.clear(); FullPathName.resize(FullPathLength); llvm::sys::path::append(RelativePathName, "PrivateHeaders", Header.FileName); llvm::sys::path::append(FullPathName, RelativePathName); File = SourceMgr.getFileManager().getFile(FullPathName); } } else { // Lookup for normal headers. llvm::sys::path::append(RelativePathName, Header.FileName); llvm::sys::path::append(FullPathName, RelativePathName); File = SourceMgr.getFileManager().getFile(FullPathName); // If this is a system module with a top-level header, this header // may have a counterpart (or replacement) in the set of headers // supplied by Clang. Find that builtin header. if (ActiveModule->IsSystem && LeadingToken != MMToken::UmbrellaKeyword && BuiltinIncludeDir && BuiltinIncludeDir != Directory && isBuiltinHeader(Header.FileName)) { SmallString<128> BuiltinPathName(BuiltinIncludeDir->getName()); llvm::sys::path::append(BuiltinPathName, Header.FileName); BuiltinFile = SourceMgr.getFileManager().getFile(BuiltinPathName); // If Clang supplies this header but the underlying system does not, // just silently swap in our builtin version. Otherwise, we'll end // up adding both (later). // // For local visibility, entirely replace the system file with our // one and textually include the system one. We need to pass macros // from our header to the system one if we #include_next it. // // FIXME: Can we do this in all cases? if (BuiltinFile && (!File || Map.LangOpts.ModulesLocalVisibility)) { File = BuiltinFile; RelativePathName = BuiltinPathName; BuiltinFile = nullptr; } } } } // FIXME: We shouldn't be eagerly stat'ing every file named in a module map. // Come up with a lazy way to do this. if (File) { if (LeadingToken == MMToken::UmbrellaKeyword) { const DirectoryEntry *UmbrellaDir = File->getDir(); if (Module *UmbrellaModule = Map.UmbrellaDirs[UmbrellaDir]) { Diags.Report(LeadingLoc, diag::err_mmap_umbrella_clash) << UmbrellaModule->getFullModuleName(); HadError = true; } else { // Record this umbrella header. Map.setUmbrellaHeader(ActiveModule, File, RelativePathName.str()); } } else if (LeadingToken == MMToken::ExcludeKeyword) { Module::Header H = {RelativePathName.str(), File}; Map.excludeHeader(ActiveModule, H); } else { // If there is a builtin counterpart to this file, add it now, before // the "real" header, so we build the built-in one first when building // the module. if (BuiltinFile) { // FIXME: Taking the name from the FileEntry is unstable and can give // different results depending on how we've previously named that file // in this build. Module::Header H = { BuiltinFile->getName(), BuiltinFile }; Map.addHeader(ActiveModule, H, Role); } // Record this header. Module::Header H = { RelativePathName.str(), File }; Map.addHeader(ActiveModule, H, Role); } } else if (LeadingToken != MMToken::ExcludeKeyword) { // Ignore excluded header files. They're optional anyway. // If we find a module that has a missing header, we mark this module as // unavailable and store the header directive for displaying diagnostics. Header.IsUmbrella = LeadingToken == MMToken::UmbrellaKeyword; ActiveModule->markUnavailable(); ActiveModule->MissingHeaders.push_back(Header); } } static int compareModuleHeaders(const Module::Header *A, const Module::Header *B) { return A->NameAsWritten.compare(B->NameAsWritten); } /// \brief Parse an umbrella directory declaration. /// /// umbrella-dir-declaration: /// umbrella string-literal void ModuleMapParser::parseUmbrellaDirDecl(SourceLocation UmbrellaLoc) { // Parse the directory name. if (!Tok.is(MMToken::StringLiteral)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_header) << "umbrella"; HadError = true; return; } std::string DirName = Tok.getString(); SourceLocation DirNameLoc = consumeToken(); // Check whether we already have an umbrella. if (ActiveModule->Umbrella) { Diags.Report(DirNameLoc, diag::err_mmap_umbrella_clash) << ActiveModule->getFullModuleName(); HadError = true; return; } // Look for this file. const DirectoryEntry *Dir = nullptr; if (llvm::sys::path::is_absolute(DirName)) Dir = SourceMgr.getFileManager().getDirectory(DirName); else { SmallString<128> PathName; PathName = Directory->getName(); llvm::sys::path::append(PathName, DirName); Dir = SourceMgr.getFileManager().getDirectory(PathName); } if (!Dir) { Diags.Report(DirNameLoc, diag::err_mmap_umbrella_dir_not_found) << DirName; HadError = true; return; } if (UsesRequiresExcludedHack.count(ActiveModule)) { // Mark this header 'textual' (see doc comment for // ModuleMapParser::UsesRequiresExcludedHack). Although iterating over the // directory is relatively expensive, in practice this only applies to the // uncommonly used Tcl module on Darwin platforms. std::error_code EC; SmallVector<Module::Header, 6> Headers; vfs::FileSystem &FS = *SourceMgr.getFileManager().getVirtualFileSystem(); for (vfs::recursive_directory_iterator I(FS, Dir->getName(), EC), E; I != E && !EC; I.increment(EC)) { if (const FileEntry *FE = SourceMgr.getFileManager().getFile(I->getName())) { Module::Header Header = {I->getName(), FE}; Headers.push_back(std::move(Header)); } } // Sort header paths so that the pcm doesn't depend on iteration order. llvm::array_pod_sort(Headers.begin(), Headers.end(), compareModuleHeaders); for (auto &Header : Headers) Map.addHeader(ActiveModule, std::move(Header), ModuleMap::TextualHeader); return; } if (Module *OwningModule = Map.UmbrellaDirs[Dir]) { Diags.Report(UmbrellaLoc, diag::err_mmap_umbrella_clash) << OwningModule->getFullModuleName(); HadError = true; return; } // Record this umbrella directory. Map.setUmbrellaDir(ActiveModule, Dir, DirName); } /// \brief Parse a module export declaration. /// /// export-declaration: /// 'export' wildcard-module-id /// /// wildcard-module-id: /// identifier /// '*' /// identifier '.' wildcard-module-id void ModuleMapParser::parseExportDecl() { assert(Tok.is(MMToken::ExportKeyword)); SourceLocation ExportLoc = consumeToken(); // Parse the module-id with an optional wildcard at the end. ModuleId ParsedModuleId; bool Wildcard = false; do { // FIXME: Support string-literal module names here. if (Tok.is(MMToken::Identifier)) { ParsedModuleId.push_back(std::make_pair(Tok.getString(), Tok.getLocation())); consumeToken(); if (Tok.is(MMToken::Period)) { consumeToken(); continue; } break; } if(Tok.is(MMToken::Star)) { Wildcard = true; consumeToken(); break; } Diags.Report(Tok.getLocation(), diag::err_mmap_module_id); HadError = true; return; } while (true); Module::UnresolvedExportDecl Unresolved = { ExportLoc, ParsedModuleId, Wildcard }; ActiveModule->UnresolvedExports.push_back(Unresolved); } /// \brief Parse a module use declaration. /// /// use-declaration: /// 'use' wildcard-module-id void ModuleMapParser::parseUseDecl() { assert(Tok.is(MMToken::UseKeyword)); auto KWLoc = consumeToken(); // Parse the module-id. ModuleId ParsedModuleId; parseModuleId(ParsedModuleId); if (ActiveModule->Parent) Diags.Report(KWLoc, diag::err_mmap_use_decl_submodule); else ActiveModule->UnresolvedDirectUses.push_back(ParsedModuleId); } /// \brief Parse a link declaration. /// /// module-declaration: /// 'link' 'framework'[opt] string-literal void ModuleMapParser::parseLinkDecl() { assert(Tok.is(MMToken::LinkKeyword)); SourceLocation LinkLoc = consumeToken(); // Parse the optional 'framework' keyword. bool IsFramework = false; if (Tok.is(MMToken::FrameworkKeyword)) { consumeToken(); IsFramework = true; } // Parse the library name if (!Tok.is(MMToken::StringLiteral)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_library_name) << IsFramework << SourceRange(LinkLoc); HadError = true; return; } std::string LibraryName = Tok.getString(); consumeToken(); ActiveModule->LinkLibraries.push_back(Module::LinkLibrary(LibraryName, IsFramework)); } /// \brief Parse a configuration macro declaration. /// /// module-declaration: /// 'config_macros' attributes[opt] config-macro-list? /// /// config-macro-list: /// identifier (',' identifier)? void ModuleMapParser::parseConfigMacros() { assert(Tok.is(MMToken::ConfigMacros)); SourceLocation ConfigMacrosLoc = consumeToken(); // Only top-level modules can have configuration macros. if (ActiveModule->Parent) { Diags.Report(ConfigMacrosLoc, diag::err_mmap_config_macro_submodule); } // Parse the optional attributes. Attributes Attrs; if (parseOptionalAttributes(Attrs)) return; if (Attrs.IsExhaustive && !ActiveModule->Parent) { ActiveModule->ConfigMacrosExhaustive = true; } // If we don't have an identifier, we're done. // FIXME: Support macros with the same name as a keyword here. if (!Tok.is(MMToken::Identifier)) return; // Consume the first identifier. if (!ActiveModule->Parent) { ActiveModule->ConfigMacros.push_back(Tok.getString().str()); } consumeToken(); do { // If there's a comma, consume it. if (!Tok.is(MMToken::Comma)) break; consumeToken(); // We expect to see a macro name here. // FIXME: Support macros with the same name as a keyword here. if (!Tok.is(MMToken::Identifier)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_config_macro); break; } // Consume the macro name. if (!ActiveModule->Parent) { ActiveModule->ConfigMacros.push_back(Tok.getString().str()); } consumeToken(); } while (true); } /// \brief Format a module-id into a string. static std::string formatModuleId(const ModuleId &Id) { std::string result; { llvm::raw_string_ostream OS(result); for (unsigned I = 0, N = Id.size(); I != N; ++I) { if (I) OS << "."; OS << Id[I].first; } } return result; } /// \brief Parse a conflict declaration. /// /// module-declaration: /// 'conflict' module-id ',' string-literal void ModuleMapParser::parseConflict() { assert(Tok.is(MMToken::Conflict)); SourceLocation ConflictLoc = consumeToken(); Module::UnresolvedConflict Conflict; // Parse the module-id. if (parseModuleId(Conflict.Id)) return; // Parse the ','. if (!Tok.is(MMToken::Comma)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_conflicts_comma) << SourceRange(ConflictLoc); return; } consumeToken(); // Parse the message. if (!Tok.is(MMToken::StringLiteral)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_conflicts_message) << formatModuleId(Conflict.Id); return; } Conflict.Message = Tok.getString().str(); consumeToken(); // Add this unresolved conflict. ActiveModule->UnresolvedConflicts.push_back(Conflict); } /// \brief Parse an inferred module declaration (wildcard modules). /// /// module-declaration: /// 'explicit'[opt] 'framework'[opt] 'module' * attributes[opt] /// { inferred-module-member* } /// /// inferred-module-member: /// 'export' '*' /// 'exclude' identifier void ModuleMapParser::parseInferredModuleDecl(bool Framework, bool Explicit) { assert(Tok.is(MMToken::Star)); SourceLocation StarLoc = consumeToken(); bool Failed = false; // Inferred modules must be submodules. if (!ActiveModule && !Framework) { Diags.Report(StarLoc, diag::err_mmap_top_level_inferred_submodule); Failed = true; } if (ActiveModule) { // Inferred modules must have umbrella directories. if (!Failed && ActiveModule->IsAvailable && !ActiveModule->getUmbrellaDir()) { Diags.Report(StarLoc, diag::err_mmap_inferred_no_umbrella); Failed = true; } // Check for redefinition of an inferred module. if (!Failed && ActiveModule->InferSubmodules) { Diags.Report(StarLoc, diag::err_mmap_inferred_redef); if (ActiveModule->InferredSubmoduleLoc.isValid()) Diags.Report(ActiveModule->InferredSubmoduleLoc, diag::note_mmap_prev_definition); Failed = true; } // Check for the 'framework' keyword, which is not permitted here. if (Framework) { Diags.Report(StarLoc, diag::err_mmap_inferred_framework_submodule); Framework = false; } } else if (Explicit) { Diags.Report(StarLoc, diag::err_mmap_explicit_inferred_framework); Explicit = false; } // If there were any problems with this inferred submodule, skip its body. if (Failed) { if (Tok.is(MMToken::LBrace)) { consumeToken(); skipUntil(MMToken::RBrace); if (Tok.is(MMToken::RBrace)) consumeToken(); } HadError = true; return; } // Parse optional attributes. Attributes Attrs; if (parseOptionalAttributes(Attrs)) return; if (ActiveModule) { // Note that we have an inferred submodule. ActiveModule->InferSubmodules = true; ActiveModule->InferredSubmoduleLoc = StarLoc; ActiveModule->InferExplicitSubmodules = Explicit; } else { // We'll be inferring framework modules for this directory. Map.InferredDirectories[Directory].InferModules = true; Map.InferredDirectories[Directory].Attrs = Attrs; Map.InferredDirectories[Directory].ModuleMapFile = ModuleMapFile; // FIXME: Handle the 'framework' keyword. } // Parse the opening brace. if (!Tok.is(MMToken::LBrace)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_lbrace_wildcard); HadError = true; return; } SourceLocation LBraceLoc = consumeToken(); // Parse the body of the inferred submodule. bool Done = false; do { switch (Tok.Kind) { case MMToken::EndOfFile: case MMToken::RBrace: Done = true; break; case MMToken::ExcludeKeyword: { if (ActiveModule) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_inferred_member) << (ActiveModule != nullptr); consumeToken(); break; } consumeToken(); // FIXME: Support string-literal module names here. if (!Tok.is(MMToken::Identifier)) { Diags.Report(Tok.getLocation(), diag::err_mmap_missing_exclude_name); break; } Map.InferredDirectories[Directory].ExcludedModules .push_back(Tok.getString()); consumeToken(); break; } case MMToken::ExportKeyword: if (!ActiveModule) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_inferred_member) << (ActiveModule != nullptr); consumeToken(); break; } consumeToken(); if (Tok.is(MMToken::Star)) ActiveModule->InferExportWildcard = true; else Diags.Report(Tok.getLocation(), diag::err_mmap_expected_export_wildcard); consumeToken(); break; case MMToken::ExplicitKeyword: case MMToken::ModuleKeyword: case MMToken::HeaderKeyword: case MMToken::PrivateKeyword: case MMToken::UmbrellaKeyword: default: Diags.Report(Tok.getLocation(), diag::err_mmap_expected_inferred_member) << (ActiveModule != nullptr); consumeToken(); break; } } while (!Done); if (Tok.is(MMToken::RBrace)) consumeToken(); else { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace); Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match); HadError = true; } } /// \brief Parse optional attributes. /// /// attributes: /// attribute attributes /// attribute /// /// attribute: /// [ identifier ] /// /// \param Attrs Will be filled in with the parsed attributes. /// /// \returns true if an error occurred, false otherwise. bool ModuleMapParser::parseOptionalAttributes(Attributes &Attrs) { bool HadError = false; while (Tok.is(MMToken::LSquare)) { // Consume the '['. SourceLocation LSquareLoc = consumeToken(); // Check whether we have an attribute name here. if (!Tok.is(MMToken::Identifier)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_attribute); skipUntil(MMToken::RSquare); if (Tok.is(MMToken::RSquare)) consumeToken(); HadError = true; } // Decode the attribute name. AttributeKind Attribute = llvm::StringSwitch<AttributeKind>(Tok.getString()) .Case("exhaustive", AT_exhaustive) .Case("extern_c", AT_extern_c) .Case("system", AT_system) .Default(AT_unknown); switch (Attribute) { case AT_unknown: Diags.Report(Tok.getLocation(), diag::warn_mmap_unknown_attribute) << Tok.getString(); break; case AT_system: Attrs.IsSystem = true; break; case AT_extern_c: Attrs.IsExternC = true; break; case AT_exhaustive: Attrs.IsExhaustive = true; break; } consumeToken(); // Consume the ']'. if (!Tok.is(MMToken::RSquare)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rsquare); Diags.Report(LSquareLoc, diag::note_mmap_lsquare_match); skipUntil(MMToken::RSquare); HadError = true; } if (Tok.is(MMToken::RSquare)) consumeToken(); } return HadError; } /// \brief Parse a module map file. /// /// module-map-file: /// module-declaration* bool ModuleMapParser::parseModuleMapFile() { do { switch (Tok.Kind) { case MMToken::EndOfFile: return HadError; case MMToken::ExplicitKeyword: case MMToken::ExternKeyword: case MMToken::ModuleKeyword: case MMToken::FrameworkKeyword: parseModuleDecl(); break; case MMToken::Comma: case MMToken::ConfigMacros: case MMToken::Conflict: case MMToken::Exclaim: case MMToken::ExcludeKeyword: case MMToken::ExportKeyword: case MMToken::HeaderKeyword: case MMToken::Identifier: case MMToken::LBrace: case MMToken::LinkKeyword: case MMToken::LSquare: case MMToken::Period: case MMToken::PrivateKeyword: case MMToken::RBrace: case MMToken::RSquare: case MMToken::RequiresKeyword: case MMToken::Star: case MMToken::StringLiteral: case MMToken::TextualKeyword: case MMToken::UmbrellaKeyword: case MMToken::UseKeyword: Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module); HadError = true; consumeToken(); break; } } while (true); } bool ModuleMap::parseModuleMapFile(const FileEntry *File, bool IsSystem, const DirectoryEntry *Dir, SourceLocation ExternModuleLoc) { llvm::DenseMap<const FileEntry *, bool>::iterator Known = ParsedModuleMap.find(File); if (Known != ParsedModuleMap.end()) return Known->second; assert(Target && "Missing target information"); auto FileCharacter = IsSystem ? SrcMgr::C_System : SrcMgr::C_User; FileID ID = SourceMgr.createFileID(File, ExternModuleLoc, FileCharacter); const llvm::MemoryBuffer *Buffer = SourceMgr.getBuffer(ID); if (!Buffer) return ParsedModuleMap[File] = true; // Parse this module map file. Lexer L(ID, SourceMgr.getBuffer(ID), SourceMgr, MMapLangOpts); SourceLocation Start = L.getSourceLocation(); ModuleMapParser Parser(L, SourceMgr, Target, Diags, *this, File, Dir, BuiltinIncludeDir, IsSystem); bool Result = Parser.parseModuleMapFile(); ParsedModuleMap[File] = Result; // Notify callbacks that we parsed it. for (const auto &Cb : Callbacks) Cb->moduleMapFileRead(Start, *File, IsSystem); return Result; }