//==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements uninitialized values analysis for source-level CFGs. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/StmtVisitor.h" #include "clang/Analysis/Analyses/PostOrderCFGView.h" #include "clang/Analysis/Analyses/UninitializedValues.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PackedVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/SaveAndRestore.h" #include <utility> using namespace clang; #define DEBUG_LOGGING 0 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) { if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() && !vd->isExceptionVariable() && !vd->isInitCapture() && !vd->isImplicit() && vd->getDeclContext() == dc) { QualType ty = vd->getType(); return ty->isScalarType() || ty->isVectorType() || ty->isRecordType(); } return false; } //------------------------------------------------------------------------====// // DeclToIndex: a mapping from Decls we track to value indices. //====------------------------------------------------------------------------// namespace { class DeclToIndex { llvm::DenseMap<const VarDecl *, unsigned> map; public: DeclToIndex() {} /// Compute the actual mapping from declarations to bits. void computeMap(const DeclContext &dc); /// Return the number of declarations in the map. unsigned size() const { return map.size(); } /// Returns the bit vector index for a given declaration. Optional<unsigned> getValueIndex(const VarDecl *d) const; }; } void DeclToIndex::computeMap(const DeclContext &dc) { unsigned count = 0; DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()), E(dc.decls_end()); for ( ; I != E; ++I) { const VarDecl *vd = *I; if (isTrackedVar(vd, &dc)) map[vd] = count++; } } Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const { llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d); if (I == map.end()) return None; return I->second; } //------------------------------------------------------------------------====// // CFGBlockValues: dataflow values for CFG blocks. //====------------------------------------------------------------------------// // These values are defined in such a way that a merge can be done using // a bitwise OR. enum Value { Unknown = 0x0, /* 00 */ Initialized = 0x1, /* 01 */ Uninitialized = 0x2, /* 10 */ MayUninitialized = 0x3 /* 11 */ }; static bool isUninitialized(const Value v) { return v >= Uninitialized; } static bool isAlwaysUninit(const Value v) { return v == Uninitialized; } namespace { typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector; class CFGBlockValues { const CFG &cfg; SmallVector<ValueVector, 8> vals; ValueVector scratch; DeclToIndex declToIndex; public: CFGBlockValues(const CFG &cfg); unsigned getNumEntries() const { return declToIndex.size(); } void computeSetOfDeclarations(const DeclContext &dc); ValueVector &getValueVector(const CFGBlock *block) { return vals[block->getBlockID()]; } void setAllScratchValues(Value V); void mergeIntoScratch(ValueVector const &source, bool isFirst); bool updateValueVectorWithScratch(const CFGBlock *block); bool hasNoDeclarations() const { return declToIndex.size() == 0; } void resetScratch(); ValueVector::reference operator[](const VarDecl *vd); Value getValue(const CFGBlock *block, const CFGBlock *dstBlock, const VarDecl *vd) { const Optional<unsigned> &idx = declToIndex.getValueIndex(vd); assert(idx.hasValue()); return getValueVector(block)[idx.getValue()]; } }; } // end anonymous namespace CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {} void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) { declToIndex.computeMap(dc); unsigned decls = declToIndex.size(); scratch.resize(decls); unsigned n = cfg.getNumBlockIDs(); if (!n) return; vals.resize(n); for (unsigned i = 0; i < n; ++i) vals[i].resize(decls); } #if DEBUG_LOGGING static void printVector(const CFGBlock *block, ValueVector &bv, unsigned num) { llvm::errs() << block->getBlockID() << " :"; for (unsigned i = 0; i < bv.size(); ++i) { llvm::errs() << ' ' << bv[i]; } llvm::errs() << " : " << num << '\n'; } #endif void CFGBlockValues::setAllScratchValues(Value V) { for (unsigned I = 0, E = scratch.size(); I != E; ++I) scratch[I] = V; } void CFGBlockValues::mergeIntoScratch(ValueVector const &source, bool isFirst) { if (isFirst) scratch = source; else scratch |= source; } bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) { ValueVector &dst = getValueVector(block); bool changed = (dst != scratch); if (changed) dst = scratch; #if DEBUG_LOGGING printVector(block, scratch, 0); #endif return changed; } void CFGBlockValues::resetScratch() { scratch.reset(); } ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) { const Optional<unsigned> &idx = declToIndex.getValueIndex(vd); assert(idx.hasValue()); return scratch[idx.getValue()]; } //------------------------------------------------------------------------====// // Worklist: worklist for dataflow analysis. //====------------------------------------------------------------------------// namespace { class DataflowWorklist { PostOrderCFGView::iterator PO_I, PO_E; SmallVector<const CFGBlock *, 20> worklist; llvm::BitVector enqueuedBlocks; public: DataflowWorklist(const CFG &cfg, PostOrderCFGView &view) : PO_I(view.begin()), PO_E(view.end()), enqueuedBlocks(cfg.getNumBlockIDs(), true) { // Treat the first block as already analyzed. if (PO_I != PO_E) { assert(*PO_I == &cfg.getEntry()); enqueuedBlocks[(*PO_I)->getBlockID()] = false; ++PO_I; } } void enqueueSuccessors(const CFGBlock *block); const CFGBlock *dequeue(); }; } void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) { for (CFGBlock::const_succ_iterator I = block->succ_begin(), E = block->succ_end(); I != E; ++I) { const CFGBlock *Successor = *I; if (!Successor || enqueuedBlocks[Successor->getBlockID()]) continue; worklist.push_back(Successor); enqueuedBlocks[Successor->getBlockID()] = true; } } const CFGBlock *DataflowWorklist::dequeue() { const CFGBlock *B = nullptr; // First dequeue from the worklist. This can represent // updates along backedges that we want propagated as quickly as possible. if (!worklist.empty()) B = worklist.pop_back_val(); // Next dequeue from the initial reverse post order. This is the // theoretical ideal in the presence of no back edges. else if (PO_I != PO_E) { B = *PO_I; ++PO_I; } else { return nullptr; } assert(enqueuedBlocks[B->getBlockID()] == true); enqueuedBlocks[B->getBlockID()] = false; return B; } //------------------------------------------------------------------------====// // Classification of DeclRefExprs as use or initialization. //====------------------------------------------------------------------------// namespace { class FindVarResult { const VarDecl *vd; const DeclRefExpr *dr; public: FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {} const DeclRefExpr *getDeclRefExpr() const { return dr; } const VarDecl *getDecl() const { return vd; } }; static const Expr *stripCasts(ASTContext &C, const Expr *Ex) { while (Ex) { Ex = Ex->IgnoreParenNoopCasts(C); if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) { if (CE->getCastKind() == CK_LValueBitCast) { Ex = CE->getSubExpr(); continue; } } break; } return Ex; } /// If E is an expression comprising a reference to a single variable, find that /// variable. static FindVarResult findVar(const Expr *E, const DeclContext *DC) { if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E))) if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) if (isTrackedVar(VD, DC)) return FindVarResult(VD, DRE); return FindVarResult(nullptr, nullptr); } /// \brief Classify each DeclRefExpr as an initialization or a use. Any /// DeclRefExpr which isn't explicitly classified will be assumed to have /// escaped the analysis and will be treated as an initialization. class ClassifyRefs : public StmtVisitor<ClassifyRefs> { public: enum Class { Init, Use, SelfInit, Ignore }; private: const DeclContext *DC; llvm::DenseMap<const DeclRefExpr*, Class> Classification; bool isTrackedVar(const VarDecl *VD) const { return ::isTrackedVar(VD, DC); } void classify(const Expr *E, Class C); public: ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {} void VisitDeclStmt(DeclStmt *DS); void VisitUnaryOperator(UnaryOperator *UO); void VisitBinaryOperator(BinaryOperator *BO); void VisitCallExpr(CallExpr *CE); void VisitCastExpr(CastExpr *CE); void operator()(Stmt *S) { Visit(S); } Class get(const DeclRefExpr *DRE) const { llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I = Classification.find(DRE); if (I != Classification.end()) return I->second; const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); if (!VD || !isTrackedVar(VD)) return Ignore; return Init; } }; } static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) { if (VD->getType()->isRecordType()) return nullptr; if (Expr *Init = VD->getInit()) { const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init)); if (DRE && DRE->getDecl() == VD) return DRE; } return nullptr; } void ClassifyRefs::classify(const Expr *E, Class C) { // The result of a ?: could also be an lvalue. E = E->IgnoreParens(); if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { classify(CO->getTrueExpr(), C); classify(CO->getFalseExpr(), C); return; } if (const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(E)) { classify(BCO->getFalseExpr(), C); return; } if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { classify(OVE->getSourceExpr(), C); return; } if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { if (VarDecl *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { if (!VD->isStaticDataMember()) classify(ME->getBase(), C); } return; } if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { switch (BO->getOpcode()) { case BO_PtrMemD: case BO_PtrMemI: classify(BO->getLHS(), C); return; case BO_Comma: classify(BO->getRHS(), C); return; default: return; } } FindVarResult Var = findVar(E, DC); if (const DeclRefExpr *DRE = Var.getDeclRefExpr()) Classification[DRE] = std::max(Classification[DRE], C); } void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) { for (auto *DI : DS->decls()) { VarDecl *VD = dyn_cast<VarDecl>(DI); if (VD && isTrackedVar(VD)) if (const DeclRefExpr *DRE = getSelfInitExpr(VD)) Classification[DRE] = SelfInit; } } void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) { // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this // is not a compound-assignment, we will treat it as initializing the variable // when TransferFunctions visits it. A compound-assignment does not affect // whether a variable is uninitialized, and there's no point counting it as a // use. if (BO->isCompoundAssignmentOp()) classify(BO->getLHS(), Use); else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma) classify(BO->getLHS(), Ignore); } void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) { // Increment and decrement are uses despite there being no lvalue-to-rvalue // conversion. if (UO->isIncrementDecrementOp()) classify(UO->getSubExpr(), Use); } static bool isPointerToConst(const QualType &QT) { return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified(); } void ClassifyRefs::VisitCallExpr(CallExpr *CE) { // Classify arguments to std::move as used. if (CE->getNumArgs() == 1) { if (FunctionDecl *FD = CE->getDirectCallee()) { if (FD->isInStdNamespace() && FD->getIdentifier() && FD->getIdentifier()->isStr("move")) { // RecordTypes are handled in SemaDeclCXX.cpp. if (!CE->getArg(0)->getType()->isRecordType()) classify(CE->getArg(0), Use); return; } } } // If a value is passed by const pointer or by const reference to a function, // we should not assume that it is initialized by the call, and we // conservatively do not assume that it is used. for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); I != E; ++I) { if ((*I)->isGLValue()) { if ((*I)->getType().isConstQualified()) classify((*I), Ignore); } else if (isPointerToConst((*I)->getType())) { const Expr *Ex = stripCasts(DC->getParentASTContext(), *I); const UnaryOperator *UO = dyn_cast<UnaryOperator>(Ex); if (UO && UO->getOpcode() == UO_AddrOf) Ex = UO->getSubExpr(); classify(Ex, Ignore); } } } void ClassifyRefs::VisitCastExpr(CastExpr *CE) { if (CE->getCastKind() == CK_LValueToRValue) classify(CE->getSubExpr(), Use); else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) { if (CSE->getType()->isVoidType()) { // Squelch any detected load of an uninitialized value if // we cast it to void. // e.g. (void) x; classify(CSE->getSubExpr(), Ignore); } } } //------------------------------------------------------------------------====// // Transfer function for uninitialized values analysis. //====------------------------------------------------------------------------// namespace { class TransferFunctions : public StmtVisitor<TransferFunctions> { CFGBlockValues &vals; const CFG &cfg; const CFGBlock *block; AnalysisDeclContext ∾ const ClassifyRefs &classification; ObjCNoReturn objCNoRet; UninitVariablesHandler &handler; public: TransferFunctions(CFGBlockValues &vals, const CFG &cfg, const CFGBlock *block, AnalysisDeclContext &ac, const ClassifyRefs &classification, UninitVariablesHandler &handler) : vals(vals), cfg(cfg), block(block), ac(ac), classification(classification), objCNoRet(ac.getASTContext()), handler(handler) {} void reportUse(const Expr *ex, const VarDecl *vd); void VisitBinaryOperator(BinaryOperator *bo); void VisitBlockExpr(BlockExpr *be); void VisitCallExpr(CallExpr *ce); void VisitDeclRefExpr(DeclRefExpr *dr); void VisitDeclStmt(DeclStmt *ds); void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS); void VisitObjCMessageExpr(ObjCMessageExpr *ME); bool isTrackedVar(const VarDecl *vd) { return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl())); } FindVarResult findVar(const Expr *ex) { return ::findVar(ex, cast<DeclContext>(ac.getDecl())); } UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) { UninitUse Use(ex, isAlwaysUninit(v)); assert(isUninitialized(v)); if (Use.getKind() == UninitUse::Always) return Use; // If an edge which leads unconditionally to this use did not initialize // the variable, we can say something stronger than 'may be uninitialized': // we can say 'either it's used uninitialized or you have dead code'. // // We track the number of successors of a node which have been visited, and // visit a node once we have visited all of its successors. Only edges where // the variable might still be uninitialized are followed. Since a variable // can't transfer from being initialized to being uninitialized, this will // trace out the subgraph which inevitably leads to the use and does not // initialize the variable. We do not want to skip past loops, since their // non-termination might be correlated with the initialization condition. // // For example: // // void f(bool a, bool b) { // block1: int n; // if (a) { // block2: if (b) // block3: n = 1; // block4: } else if (b) { // block5: while (!a) { // block6: do_work(&a); // n = 2; // } // } // block7: if (a) // block8: g(); // block9: return n; // } // // Starting from the maybe-uninitialized use in block 9: // * Block 7 is not visited because we have only visited one of its two // successors. // * Block 8 is visited because we've visited its only successor. // From block 8: // * Block 7 is visited because we've now visited both of its successors. // From block 7: // * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all // of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively). // * Block 3 is not visited because it initializes 'n'. // Now the algorithm terminates, having visited blocks 7 and 8, and having // found the frontier is blocks 2, 4, and 5. // // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2 // and 4), so we report that any time either of those edges is taken (in // each case when 'b == false'), 'n' is used uninitialized. SmallVector<const CFGBlock*, 32> Queue; SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0); Queue.push_back(block); // Specify that we've already visited all successors of the starting block. // This has the dual purpose of ensuring we never add it to the queue, and // of marking it as not being a candidate element of the frontier. SuccsVisited[block->getBlockID()] = block->succ_size(); while (!Queue.empty()) { const CFGBlock *B = Queue.pop_back_val(); // If the use is always reached from the entry block, make a note of that. if (B == &cfg.getEntry()) Use.setUninitAfterCall(); for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end(); I != E; ++I) { const CFGBlock *Pred = *I; if (!Pred) continue; Value AtPredExit = vals.getValue(Pred, B, vd); if (AtPredExit == Initialized) // This block initializes the variable. continue; if (AtPredExit == MayUninitialized && vals.getValue(B, nullptr, vd) == Uninitialized) { // This block declares the variable (uninitialized), and is reachable // from a block that initializes the variable. We can't guarantee to // give an earlier location for the diagnostic (and it appears that // this code is intended to be reachable) so give a diagnostic here // and go no further down this path. Use.setUninitAfterDecl(); continue; } unsigned &SV = SuccsVisited[Pred->getBlockID()]; if (!SV) { // When visiting the first successor of a block, mark all NULL // successors as having been visited. for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(), SE = Pred->succ_end(); SI != SE; ++SI) if (!*SI) ++SV; } if (++SV == Pred->succ_size()) // All paths from this block lead to the use and don't initialize the // variable. Queue.push_back(Pred); } } // Scan the frontier, looking for blocks where the variable was // uninitialized. for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) { const CFGBlock *Block = *BI; unsigned BlockID = Block->getBlockID(); const Stmt *Term = Block->getTerminator(); if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() && Term) { // This block inevitably leads to the use. If we have an edge from here // to a post-dominator block, and the variable is uninitialized on that // edge, we have found a bug. for (CFGBlock::const_succ_iterator I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) { const CFGBlock *Succ = *I; if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() && vals.getValue(Block, Succ, vd) == Uninitialized) { // Switch cases are a special case: report the label to the caller // as the 'terminator', not the switch statement itself. Suppress // situations where no label matched: we can't be sure that's // possible. if (isa<SwitchStmt>(Term)) { const Stmt *Label = Succ->getLabel(); if (!Label || !isa<SwitchCase>(Label)) // Might not be possible. continue; UninitUse::Branch Branch; Branch.Terminator = Label; Branch.Output = 0; // Ignored. Use.addUninitBranch(Branch); } else { UninitUse::Branch Branch; Branch.Terminator = Term; Branch.Output = I - Block->succ_begin(); Use.addUninitBranch(Branch); } } } } } return Use; } }; } void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) { Value v = vals[vd]; if (isUninitialized(v)) handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v)); } void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) { // This represents an initialization of the 'element' value. if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) { const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl()); if (isTrackedVar(VD)) vals[VD] = Initialized; } } void TransferFunctions::VisitBlockExpr(BlockExpr *be) { const BlockDecl *bd = be->getBlockDecl(); for (const auto &I : bd->captures()) { const VarDecl *vd = I.getVariable(); if (!isTrackedVar(vd)) continue; if (I.isByRef()) { vals[vd] = Initialized; continue; } reportUse(be, vd); } } void TransferFunctions::VisitCallExpr(CallExpr *ce) { if (Decl *Callee = ce->getCalleeDecl()) { if (Callee->hasAttr<ReturnsTwiceAttr>()) { // After a call to a function like setjmp or vfork, any variable which is // initialized anywhere within this function may now be initialized. For // now, just assume such a call initializes all variables. FIXME: Only // mark variables as initialized if they have an initializer which is // reachable from here. vals.setAllScratchValues(Initialized); } else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) { // Functions labeled like "analyzer_noreturn" are often used to denote // "panic" functions that in special debug situations can still return, // but for the most part should not be treated as returning. This is a // useful annotation borrowed from the static analyzer that is useful for // suppressing branch-specific false positives when we call one of these // functions but keep pretending the path continues (when in reality the // user doesn't care). vals.setAllScratchValues(Unknown); } } } void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) { switch (classification.get(dr)) { case ClassifyRefs::Ignore: break; case ClassifyRefs::Use: reportUse(dr, cast<VarDecl>(dr->getDecl())); break; case ClassifyRefs::Init: vals[cast<VarDecl>(dr->getDecl())] = Initialized; break; case ClassifyRefs::SelfInit: handler.handleSelfInit(cast<VarDecl>(dr->getDecl())); break; } } void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) { if (BO->getOpcode() == BO_Assign) { FindVarResult Var = findVar(BO->getLHS()); if (const VarDecl *VD = Var.getDecl()) vals[VD] = Initialized; } } void TransferFunctions::VisitDeclStmt(DeclStmt *DS) { for (auto *DI : DS->decls()) { VarDecl *VD = dyn_cast<VarDecl>(DI); if (VD && isTrackedVar(VD)) { if (getSelfInitExpr(VD)) { // If the initializer consists solely of a reference to itself, we // explicitly mark the variable as uninitialized. This allows code // like the following: // // int x = x; // // to deliberately leave a variable uninitialized. Different analysis // clients can detect this pattern and adjust their reporting // appropriately, but we need to continue to analyze subsequent uses // of the variable. vals[VD] = Uninitialized; } else if (VD->getInit()) { // Treat the new variable as initialized. vals[VD] = Initialized; } else { // No initializer: the variable is now uninitialized. This matters // for cases like: // while (...) { // int n; // use(n); // n = 0; // } // FIXME: Mark the variable as uninitialized whenever its scope is // left, since its scope could be re-entered by a jump over the // declaration. vals[VD] = Uninitialized; } } } } void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) { // If the Objective-C message expression is an implicit no-return that // is not modeled in the CFG, set the tracked dataflow values to Unknown. if (objCNoRet.isImplicitNoReturn(ME)) { vals.setAllScratchValues(Unknown); } } //------------------------------------------------------------------------====// // High-level "driver" logic for uninitialized values analysis. //====------------------------------------------------------------------------// static bool runOnBlock(const CFGBlock *block, const CFG &cfg, AnalysisDeclContext &ac, CFGBlockValues &vals, const ClassifyRefs &classification, llvm::BitVector &wasAnalyzed, UninitVariablesHandler &handler) { wasAnalyzed[block->getBlockID()] = true; vals.resetScratch(); // Merge in values of predecessor blocks. bool isFirst = true; for (CFGBlock::const_pred_iterator I = block->pred_begin(), E = block->pred_end(); I != E; ++I) { const CFGBlock *pred = *I; if (!pred) continue; if (wasAnalyzed[pred->getBlockID()]) { vals.mergeIntoScratch(vals.getValueVector(pred), isFirst); isFirst = false; } } // Apply the transfer function. TransferFunctions tf(vals, cfg, block, ac, classification, handler); for (CFGBlock::const_iterator I = block->begin(), E = block->end(); I != E; ++I) { if (Optional<CFGStmt> cs = I->getAs<CFGStmt>()) tf.Visit(const_cast<Stmt*>(cs->getStmt())); } return vals.updateValueVectorWithScratch(block); } /// PruneBlocksHandler is a special UninitVariablesHandler that is used /// to detect when a CFGBlock has any *potential* use of an uninitialized /// variable. It is mainly used to prune out work during the final /// reporting pass. namespace { struct PruneBlocksHandler : public UninitVariablesHandler { PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false), hadAnyUse(false), currentBlock(0) {} ~PruneBlocksHandler() override {} /// Records if a CFGBlock had a potential use of an uninitialized variable. llvm::BitVector hadUse; /// Records if any CFGBlock had a potential use of an uninitialized variable. bool hadAnyUse; /// The current block to scribble use information. unsigned currentBlock; void handleUseOfUninitVariable(const VarDecl *vd, const UninitUse &use) override { hadUse[currentBlock] = true; hadAnyUse = true; } /// Called when the uninitialized variable analysis detects the /// idiom 'int x = x'. All other uses of 'x' within the initializer /// are handled by handleUseOfUninitVariable. void handleSelfInit(const VarDecl *vd) override { hadUse[currentBlock] = true; hadAnyUse = true; } }; } void clang::runUninitializedVariablesAnalysis( const DeclContext &dc, const CFG &cfg, AnalysisDeclContext &ac, UninitVariablesHandler &handler, UninitVariablesAnalysisStats &stats) { CFGBlockValues vals(cfg); vals.computeSetOfDeclarations(dc); if (vals.hasNoDeclarations()) return; stats.NumVariablesAnalyzed = vals.getNumEntries(); // Precompute which expressions are uses and which are initializations. ClassifyRefs classification(ac); cfg.VisitBlockStmts(classification); // Mark all variables uninitialized at the entry. const CFGBlock &entry = cfg.getEntry(); ValueVector &vec = vals.getValueVector(&entry); const unsigned n = vals.getNumEntries(); for (unsigned j = 0; j < n ; ++j) { vec[j] = Uninitialized; } // Proceed with the workist. DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>()); llvm::BitVector previouslyVisited(cfg.getNumBlockIDs()); worklist.enqueueSuccessors(&cfg.getEntry()); llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false); wasAnalyzed[cfg.getEntry().getBlockID()] = true; PruneBlocksHandler PBH(cfg.getNumBlockIDs()); while (const CFGBlock *block = worklist.dequeue()) { PBH.currentBlock = block->getBlockID(); // Did the block change? bool changed = runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, PBH); ++stats.NumBlockVisits; if (changed || !previouslyVisited[block->getBlockID()]) worklist.enqueueSuccessors(block); previouslyVisited[block->getBlockID()] = true; } if (!PBH.hadAnyUse) return; // Run through the blocks one more time, and report uninitialized variables. for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) { const CFGBlock *block = *BI; if (PBH.hadUse[block->getBlockID()]) { runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler); ++stats.NumBlockVisits; } } } UninitVariablesHandler::~UninitVariablesHandler() {}