//===- ThreadSafetyCommon.cpp -----------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of the interfaces declared in ThreadSafetyCommon.h // //===----------------------------------------------------------------------===// #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" #include "clang/AST/Attr.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/StmtCXX.h" #include "clang/Analysis/Analyses/PostOrderCFGView.h" #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Analysis/CFG.h" #include "clang/Basic/OperatorKinds.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include <algorithm> #include <climits> #include <vector> using namespace clang; using namespace threadSafety; // From ThreadSafetyUtil.h std::string threadSafety::getSourceLiteralString(const clang::Expr *CE) { switch (CE->getStmtClass()) { case Stmt::IntegerLiteralClass: return cast<IntegerLiteral>(CE)->getValue().toString(10, true); case Stmt::StringLiteralClass: { std::string ret("\""); ret += cast<StringLiteral>(CE)->getString(); ret += "\""; return ret; } case Stmt::CharacterLiteralClass: case Stmt::CXXNullPtrLiteralExprClass: case Stmt::GNUNullExprClass: case Stmt::CXXBoolLiteralExprClass: case Stmt::FloatingLiteralClass: case Stmt::ImaginaryLiteralClass: case Stmt::ObjCStringLiteralClass: default: return "#lit"; } } // Return true if E is a variable that points to an incomplete Phi node. static bool isIncompletePhi(const til::SExpr *E) { if (const auto *Ph = dyn_cast<til::Phi>(E)) return Ph->status() == til::Phi::PH_Incomplete; return false; } typedef SExprBuilder::CallingContext CallingContext; til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { auto It = SMap.find(S); if (It != SMap.end()) return It->second; return nullptr; } til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { Walker.walk(*this); return Scfg; } static bool isCalleeArrow(const Expr *E) { const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts()); return ME ? ME->isArrow() : false; } /// \brief Translate a clang expression in an attribute to a til::SExpr. /// Constructs the context from D, DeclExp, and SelfDecl. /// /// \param AttrExp The expression to translate. /// \param D The declaration to which the attribute is attached. /// \param DeclExp An expression involving the Decl to which the attribute /// is attached. E.g. the call to a function. CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, const NamedDecl *D, const Expr *DeclExp, VarDecl *SelfDecl) { // If we are processing a raw attribute expression, with no substitutions. if (!DeclExp) return translateAttrExpr(AttrExp, nullptr); CallingContext Ctx(nullptr, D); // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute // for formal parameters when we call buildMutexID later. if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) { Ctx.SelfArg = ME->getBase(); Ctx.SelfArrow = ME->isArrow(); } else if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) { Ctx.SelfArg = CE->getImplicitObjectArgument(); Ctx.SelfArrow = isCalleeArrow(CE->getCallee()); Ctx.NumArgs = CE->getNumArgs(); Ctx.FunArgs = CE->getArgs(); } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) { Ctx.NumArgs = CE->getNumArgs(); Ctx.FunArgs = CE->getArgs(); } else if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) { Ctx.SelfArg = nullptr; // Will be set below Ctx.NumArgs = CE->getNumArgs(); Ctx.FunArgs = CE->getArgs(); } else if (D && isa<CXXDestructorDecl>(D)) { // There's no such thing as a "destructor call" in the AST. Ctx.SelfArg = DeclExp; } // Hack to handle constructors, where self cannot be recovered from // the expression. if (SelfDecl && !Ctx.SelfArg) { DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, SelfDecl->getLocation()); Ctx.SelfArg = &SelfDRE; // If the attribute has no arguments, then assume the argument is "this". if (!AttrExp) return translateAttrExpr(Ctx.SelfArg, nullptr); else // For most attributes. return translateAttrExpr(AttrExp, &Ctx); } // If the attribute has no arguments, then assume the argument is "this". if (!AttrExp) return translateAttrExpr(Ctx.SelfArg, nullptr); else // For most attributes. return translateAttrExpr(AttrExp, &Ctx); } /// \brief Translate a clang expression in an attribute to a til::SExpr. // This assumes a CallingContext has already been created. CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, CallingContext *Ctx) { if (!AttrExp) return CapabilityExpr(nullptr, false); if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) { if (SLit->getString() == StringRef("*")) // The "*" expr is a universal lock, which essentially turns off // checks until it is removed from the lockset. return CapabilityExpr(new (Arena) til::Wildcard(), false); else // Ignore other string literals for now. return CapabilityExpr(nullptr, false); } bool Neg = false; if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) { if (OE->getOperator() == OO_Exclaim) { Neg = true; AttrExp = OE->getArg(0); } } else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) { if (UO->getOpcode() == UO_LNot) { Neg = true; AttrExp = UO->getSubExpr(); } } til::SExpr *E = translate(AttrExp, Ctx); // Trap mutex expressions like nullptr, or 0. // Any literal value is nonsense. if (!E || isa<til::Literal>(E)) return CapabilityExpr(nullptr, false); // Hack to deal with smart pointers -- strip off top-level pointer casts. if (auto *CE = dyn_cast_or_null<til::Cast>(E)) { if (CE->castOpcode() == til::CAST_objToPtr) return CapabilityExpr(CE->expr(), Neg); } return CapabilityExpr(E, Neg); } // Translate a clang statement or expression to a TIL expression. // Also performs substitution of variables; Ctx provides the context. // Dispatches on the type of S. til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { if (!S) return nullptr; // Check if S has already been translated and cached. // This handles the lookup of SSA names for DeclRefExprs here. if (til::SExpr *E = lookupStmt(S)) return E; switch (S->getStmtClass()) { case Stmt::DeclRefExprClass: return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx); case Stmt::CXXThisExprClass: return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx); case Stmt::MemberExprClass: return translateMemberExpr(cast<MemberExpr>(S), Ctx); case Stmt::CallExprClass: return translateCallExpr(cast<CallExpr>(S), Ctx); case Stmt::CXXMemberCallExprClass: return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx); case Stmt::CXXOperatorCallExprClass: return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx); case Stmt::UnaryOperatorClass: return translateUnaryOperator(cast<UnaryOperator>(S), Ctx); case Stmt::BinaryOperatorClass: case Stmt::CompoundAssignOperatorClass: return translateBinaryOperator(cast<BinaryOperator>(S), Ctx); case Stmt::ArraySubscriptExprClass: return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx); case Stmt::ConditionalOperatorClass: return translateAbstractConditionalOperator( cast<ConditionalOperator>(S), Ctx); case Stmt::BinaryConditionalOperatorClass: return translateAbstractConditionalOperator( cast<BinaryConditionalOperator>(S), Ctx); // We treat these as no-ops case Stmt::ParenExprClass: return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx); case Stmt::ExprWithCleanupsClass: return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx); case Stmt::CXXBindTemporaryExprClass: return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx); // Collect all literals case Stmt::CharacterLiteralClass: case Stmt::CXXNullPtrLiteralExprClass: case Stmt::GNUNullExprClass: case Stmt::CXXBoolLiteralExprClass: case Stmt::FloatingLiteralClass: case Stmt::ImaginaryLiteralClass: case Stmt::IntegerLiteralClass: case Stmt::StringLiteralClass: case Stmt::ObjCStringLiteralClass: return new (Arena) til::Literal(cast<Expr>(S)); case Stmt::DeclStmtClass: return translateDeclStmt(cast<DeclStmt>(S), Ctx); default: break; } if (const CastExpr *CE = dyn_cast<CastExpr>(S)) return translateCastExpr(CE, Ctx); return new (Arena) til::Undefined(S); } til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, CallingContext *Ctx) { const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); // Function parameters require substitution and/or renaming. if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) { const FunctionDecl *FD = cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl(); unsigned I = PV->getFunctionScopeIndex(); if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) { // Substitute call arguments for references to function parameters assert(I < Ctx->NumArgs); return translate(Ctx->FunArgs[I], Ctx->Prev); } // Map the param back to the param of the original function declaration // for consistent comparisons. VD = FD->getParamDecl(I); } // For non-local variables, treat it as a reference to a named object. return new (Arena) til::LiteralPtr(VD); } til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, CallingContext *Ctx) { // Substitute for 'this' if (Ctx && Ctx->SelfArg) return translate(Ctx->SelfArg, Ctx->Prev); assert(SelfVar && "We have no variable for 'this'!"); return SelfVar; } static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) { if (auto *V = dyn_cast<til::Variable>(E)) return V->clangDecl(); if (auto *Ph = dyn_cast<til::Phi>(E)) return Ph->clangDecl(); if (auto *P = dyn_cast<til::Project>(E)) return P->clangDecl(); if (auto *L = dyn_cast<til::LiteralPtr>(E)) return L->clangDecl(); return nullptr; } static bool hasCppPointerType(const til::SExpr *E) { auto *VD = getValueDeclFromSExpr(E); if (VD && VD->getType()->isPointerType()) return true; if (auto *C = dyn_cast<til::Cast>(E)) return C->castOpcode() == til::CAST_objToPtr; return false; } // Grab the very first declaration of virtual method D static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) { while (true) { D = D->getCanonicalDecl(); CXXMethodDecl::method_iterator I = D->begin_overridden_methods(), E = D->end_overridden_methods(); if (I == E) return D; // Method does not override anything D = *I; // FIXME: this does not work with multiple inheritance. } return nullptr; } til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, CallingContext *Ctx) { til::SExpr *BE = translate(ME->getBase(), Ctx); til::SExpr *E = new (Arena) til::SApply(BE); const ValueDecl *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); if (auto *VD = dyn_cast<CXXMethodDecl>(D)) D = getFirstVirtualDecl(VD); til::Project *P = new (Arena) til::Project(E, D); if (hasCppPointerType(BE)) P->setArrow(true); return P; } til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, CallingContext *Ctx, const Expr *SelfE) { if (CapabilityExprMode) { // Handle LOCK_RETURNED const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl(); if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) { CallingContext LRCallCtx(Ctx); LRCallCtx.AttrDecl = CE->getDirectCallee(); LRCallCtx.SelfArg = SelfE; LRCallCtx.NumArgs = CE->getNumArgs(); LRCallCtx.FunArgs = CE->getArgs(); return const_cast<til::SExpr*>( translateAttrExpr(At->getArg(), &LRCallCtx).sexpr()); } } til::SExpr *E = translate(CE->getCallee(), Ctx); for (const auto *Arg : CE->arguments()) { til::SExpr *A = translate(Arg, Ctx); E = new (Arena) til::Apply(E, A); } return new (Arena) til::Call(E, CE); } til::SExpr *SExprBuilder::translateCXXMemberCallExpr( const CXXMemberCallExpr *ME, CallingContext *Ctx) { if (CapabilityExprMode) { // Ignore calls to get() on smart pointers. if (ME->getMethodDecl()->getNameAsString() == "get" && ME->getNumArgs() == 0) { auto *E = translate(ME->getImplicitObjectArgument(), Ctx); return new (Arena) til::Cast(til::CAST_objToPtr, E); // return E; } } return translateCallExpr(cast<CallExpr>(ME), Ctx, ME->getImplicitObjectArgument()); } til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { if (CapabilityExprMode) { // Ignore operator * and operator -> on smart pointers. OverloadedOperatorKind k = OCE->getOperator(); if (k == OO_Star || k == OO_Arrow) { auto *E = translate(OCE->getArg(0), Ctx); return new (Arena) til::Cast(til::CAST_objToPtr, E); // return E; } } return translateCallExpr(cast<CallExpr>(OCE), Ctx); } til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, CallingContext *Ctx) { switch (UO->getOpcode()) { case UO_PostInc: case UO_PostDec: case UO_PreInc: case UO_PreDec: return new (Arena) til::Undefined(UO); case UO_AddrOf: { if (CapabilityExprMode) { // interpret &Graph::mu_ as an existential. if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) { if (DRE->getDecl()->isCXXInstanceMember()) { // This is a pointer-to-member expression, e.g. &MyClass::mu_. // We interpret this syntax specially, as a wildcard. auto *W = new (Arena) til::Wildcard(); return new (Arena) til::Project(W, DRE->getDecl()); } } } // otherwise, & is a no-op return translate(UO->getSubExpr(), Ctx); } // We treat these as no-ops case UO_Deref: case UO_Plus: return translate(UO->getSubExpr(), Ctx); case UO_Minus: return new (Arena) til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx)); case UO_Not: return new (Arena) til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx)); case UO_LNot: return new (Arena) til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx)); // Currently unsupported case UO_Real: case UO_Imag: case UO_Extension: case UO_Coawait: return new (Arena) til::Undefined(UO); } return new (Arena) til::Undefined(UO); } til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op, const BinaryOperator *BO, CallingContext *Ctx, bool Reverse) { til::SExpr *E0 = translate(BO->getLHS(), Ctx); til::SExpr *E1 = translate(BO->getRHS(), Ctx); if (Reverse) return new (Arena) til::BinaryOp(Op, E1, E0); else return new (Arena) til::BinaryOp(Op, E0, E1); } til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op, const BinaryOperator *BO, CallingContext *Ctx, bool Assign) { const Expr *LHS = BO->getLHS(); const Expr *RHS = BO->getRHS(); til::SExpr *E0 = translate(LHS, Ctx); til::SExpr *E1 = translate(RHS, Ctx); const ValueDecl *VD = nullptr; til::SExpr *CV = nullptr; if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) { VD = DRE->getDecl(); CV = lookupVarDecl(VD); } if (!Assign) { til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0); E1 = new (Arena) til::BinaryOp(Op, Arg, E1); E1 = addStatement(E1, nullptr, VD); } if (VD && CV) return updateVarDecl(VD, E1); return new (Arena) til::Store(E0, E1); } til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, CallingContext *Ctx) { switch (BO->getOpcode()) { case BO_PtrMemD: case BO_PtrMemI: return new (Arena) til::Undefined(BO); case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx); case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx); case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx); case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx); case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx); case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx); case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx); case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx); case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true); case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx); case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true); case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx); case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx); case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx); case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx); case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx); case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx); case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx); case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true); case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx); case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx); case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx); case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx); case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx); case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx); case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx); case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx); case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx); case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx); case BO_Comma: // The clang CFG should have already processed both sides. return translate(BO->getRHS(), Ctx); } return new (Arena) til::Undefined(BO); } til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, CallingContext *Ctx) { clang::CastKind K = CE->getCastKind(); switch (K) { case CK_LValueToRValue: { if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); if (E0) return E0; } til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); return E0; // FIXME!! -- get Load working properly // return new (Arena) til::Load(E0); } case CK_NoOp: case CK_DerivedToBase: case CK_UncheckedDerivedToBase: case CK_ArrayToPointerDecay: case CK_FunctionToPointerDecay: { til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); return E0; } default: { // FIXME: handle different kinds of casts. til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); if (CapabilityExprMode) return E0; return new (Arena) til::Cast(til::CAST_none, E0); } } } til::SExpr * SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, CallingContext *Ctx) { til::SExpr *E0 = translate(E->getBase(), Ctx); til::SExpr *E1 = translate(E->getIdx(), Ctx); return new (Arena) til::ArrayIndex(E0, E1); } til::SExpr * SExprBuilder::translateAbstractConditionalOperator( const AbstractConditionalOperator *CO, CallingContext *Ctx) { auto *C = translate(CO->getCond(), Ctx); auto *T = translate(CO->getTrueExpr(), Ctx); auto *E = translate(CO->getFalseExpr(), Ctx); return new (Arena) til::IfThenElse(C, T, E); } til::SExpr * SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { DeclGroupRef DGrp = S->getDeclGroup(); for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) { Expr *E = VD->getInit(); til::SExpr* SE = translate(E, Ctx); // Add local variables with trivial type to the variable map QualType T = VD->getType(); if (T.isTrivialType(VD->getASTContext())) { return addVarDecl(VD, SE); } else { // TODO: add alloca } } } return nullptr; } // If (E) is non-trivial, then add it to the current basic block, and // update the statement map so that S refers to E. Returns a new variable // that refers to E. // If E is trivial returns E. til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, const ValueDecl *VD) { if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E)) return E; if (VD) E = new (Arena) til::Variable(E, VD); CurrentInstructions.push_back(E); if (S) insertStmt(S, E); return E; } // Returns the current value of VD, if known, and nullptr otherwise. til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { auto It = LVarIdxMap.find(VD); if (It != LVarIdxMap.end()) { assert(CurrentLVarMap[It->second].first == VD); return CurrentLVarMap[It->second].second; } return nullptr; } // if E is a til::Variable, update its clangDecl. static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { if (!E) return; if (til::Variable *V = dyn_cast<til::Variable>(E)) { if (!V->clangDecl()) V->setClangDecl(VD); } } // Adds a new variable declaration. til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { maybeUpdateVD(E, VD); LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); CurrentLVarMap.makeWritable(); CurrentLVarMap.push_back(std::make_pair(VD, E)); return E; } // Updates a current variable declaration. (E.g. by assignment) til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { maybeUpdateVD(E, VD); auto It = LVarIdxMap.find(VD); if (It == LVarIdxMap.end()) { til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); til::SExpr *St = new (Arena) til::Store(Ptr, E); return St; } CurrentLVarMap.makeWritable(); CurrentLVarMap.elem(It->second).second = E; return E; } // Make a Phi node in the current block for the i^th variable in CurrentVarMap. // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. // If E == null, this is a backedge and will be set later. void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; assert(ArgIndex > 0 && ArgIndex < NPreds); til::SExpr *CurrE = CurrentLVarMap[i].second; if (CurrE->block() == CurrentBB) { // We already have a Phi node in the current block, // so just add the new variable to the Phi node. til::Phi *Ph = dyn_cast<til::Phi>(CurrE); assert(Ph && "Expecting Phi node."); if (E) Ph->values()[ArgIndex] = E; return; } // Make a new phi node: phi(..., E) // All phi args up to the current index are set to the current value. til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); Ph->values().setValues(NPreds, nullptr); for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) Ph->values()[PIdx] = CurrE; if (E) Ph->values()[ArgIndex] = E; Ph->setClangDecl(CurrentLVarMap[i].first); // If E is from a back-edge, or either E or CurrE are incomplete, then // mark this node as incomplete; we may need to remove it later. if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) { Ph->setStatus(til::Phi::PH_Incomplete); } // Add Phi node to current block, and update CurrentLVarMap[i] CurrentArguments.push_back(Ph); if (Ph->status() == til::Phi::PH_Incomplete) IncompleteArgs.push_back(Ph); CurrentLVarMap.makeWritable(); CurrentLVarMap.elem(i).second = Ph; } // Merge values from Map into the current variable map. // This will construct Phi nodes in the current basic block as necessary. void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { assert(CurrentBlockInfo && "Not processing a block!"); if (!CurrentLVarMap.valid()) { // Steal Map, using copy-on-write. CurrentLVarMap = std::move(Map); return; } if (CurrentLVarMap.sameAs(Map)) return; // Easy merge: maps from different predecessors are unchanged. unsigned NPreds = CurrentBB->numPredecessors(); unsigned ESz = CurrentLVarMap.size(); unsigned MSz = Map.size(); unsigned Sz = std::min(ESz, MSz); for (unsigned i=0; i<Sz; ++i) { if (CurrentLVarMap[i].first != Map[i].first) { // We've reached the end of variables in common. CurrentLVarMap.makeWritable(); CurrentLVarMap.downsize(i); break; } if (CurrentLVarMap[i].second != Map[i].second) makePhiNodeVar(i, NPreds, Map[i].second); } if (ESz > MSz) { CurrentLVarMap.makeWritable(); CurrentLVarMap.downsize(Map.size()); } } // Merge a back edge into the current variable map. // This will create phi nodes for all variables in the variable map. void SExprBuilder::mergeEntryMapBackEdge() { // We don't have definitions for variables on the backedge, because we // haven't gotten that far in the CFG. Thus, when encountering a back edge, // we conservatively create Phi nodes for all variables. Unnecessary Phi // nodes will be marked as incomplete, and stripped out at the end. // // An Phi node is unnecessary if it only refers to itself and one other // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. assert(CurrentBlockInfo && "Not processing a block!"); if (CurrentBlockInfo->HasBackEdges) return; CurrentBlockInfo->HasBackEdges = true; CurrentLVarMap.makeWritable(); unsigned Sz = CurrentLVarMap.size(); unsigned NPreds = CurrentBB->numPredecessors(); for (unsigned i=0; i < Sz; ++i) { makePhiNodeVar(i, NPreds, nullptr); } } // Update the phi nodes that were initially created for a back edge // once the variable definitions have been computed. // I.e., merge the current variable map into the phi nodes for Blk. void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { til::BasicBlock *BB = lookupBlock(Blk); unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); for (til::SExpr *PE : BB->arguments()) { til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE); assert(Ph && "Expecting Phi Node."); assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); til::SExpr *E = lookupVarDecl(Ph->clangDecl()); assert(E && "Couldn't find local variable for Phi node."); Ph->values()[ArgIndex] = E; } } void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, const CFGBlock *First) { // Perform initial setup operations. unsigned NBlocks = Cfg->getNumBlockIDs(); Scfg = new (Arena) til::SCFG(Arena, NBlocks); // allocate all basic blocks immediately, to handle forward references. BBInfo.resize(NBlocks); BlockMap.resize(NBlocks, nullptr); // create map from clang blockID to til::BasicBlocks for (auto *B : *Cfg) { auto *BB = new (Arena) til::BasicBlock(Arena); BB->reserveInstructions(B->size()); BlockMap[B->getBlockID()] = BB; } CurrentBB = lookupBlock(&Cfg->getEntry()); auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters() : cast<FunctionDecl>(D)->parameters(); for (auto *Pm : Parms) { QualType T = Pm->getType(); if (!T.isTrivialType(Pm->getASTContext())) continue; // Add parameters to local variable map. // FIXME: right now we emulate params with loads; that should be fixed. til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm); til::SExpr *Ld = new (Arena) til::Load(Lp); til::SExpr *V = addStatement(Ld, nullptr, Pm); addVarDecl(Pm, V); } } void SExprBuilder::enterCFGBlock(const CFGBlock *B) { // Intialize TIL basic block and add it to the CFG. CurrentBB = lookupBlock(B); CurrentBB->reservePredecessors(B->pred_size()); Scfg->add(CurrentBB); CurrentBlockInfo = &BBInfo[B->getBlockID()]; // CurrentLVarMap is moved to ExitMap on block exit. // FIXME: the entry block will hold function parameters. // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); } void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { // Compute CurrentLVarMap on entry from ExitMaps of predecessors CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]); BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; assert(PredInfo->UnprocessedSuccessors > 0); if (--PredInfo->UnprocessedSuccessors == 0) mergeEntryMap(std::move(PredInfo->ExitMap)); else mergeEntryMap(PredInfo->ExitMap.clone()); ++CurrentBlockInfo->ProcessedPredecessors; } void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { mergeEntryMapBackEdge(); } void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { // The merge*() methods have created arguments. // Push those arguments onto the basic block. CurrentBB->arguments().reserve( static_cast<unsigned>(CurrentArguments.size()), Arena); for (auto *A : CurrentArguments) CurrentBB->addArgument(A); } void SExprBuilder::handleStatement(const Stmt *S) { til::SExpr *E = translate(S, nullptr); addStatement(E, S); } void SExprBuilder::handleDestructorCall(const VarDecl *VD, const CXXDestructorDecl *DD) { til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); til::SExpr *E = new (Arena) til::Call(Ap); addStatement(E, nullptr); } void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { CurrentBB->instructions().reserve( static_cast<unsigned>(CurrentInstructions.size()), Arena); for (auto *V : CurrentInstructions) CurrentBB->addInstruction(V); // Create an appropriate terminator unsigned N = B->succ_size(); auto It = B->succ_begin(); if (N == 1) { til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; // TODO: set index unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0; auto *Tm = new (Arena) til::Goto(BB, Idx); CurrentBB->setTerminator(Tm); } else if (N == 2) { til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr); til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; ++It; til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; // FIXME: make sure these arent' critical edges. auto *Tm = new (Arena) til::Branch(C, BB1, BB2); CurrentBB->setTerminator(Tm); } } void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { ++CurrentBlockInfo->UnprocessedSuccessors; } void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { mergePhiNodesBackEdge(Succ); ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; } void SExprBuilder::exitCFGBlock(const CFGBlock *B) { CurrentArguments.clear(); CurrentInstructions.clear(); CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); CurrentBB = nullptr; CurrentBlockInfo = nullptr; } void SExprBuilder::exitCFG(const CFGBlock *Last) { for (auto *Ph : IncompleteArgs) { if (Ph->status() == til::Phi::PH_Incomplete) simplifyIncompleteArg(Ph); } CurrentArguments.clear(); CurrentInstructions.clear(); IncompleteArgs.clear(); } /* void printSCFG(CFGWalker &Walker) { llvm::BumpPtrAllocator Bpa; til::MemRegionRef Arena(&Bpa); SExprBuilder SxBuilder(Arena); til::SCFG *Scfg = SxBuilder.buildCFG(Walker); TILPrinter::print(Scfg, llvm::errs()); } */