/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ // This implementation was taken from the public domain, neon2 version in // SUPERCOP by D. J. Bernstein and Peter Schwabe. #include <openssl/poly1305.h> #include <string.h> #include "../internal.h" #include "internal.h" #if defined(OPENSSL_POLY1305_NEON) typedef struct { uint32_t v[12]; // for alignment; only using 10 } fe1305x2; #define addmulmod openssl_poly1305_neon2_addmulmod #define blocks openssl_poly1305_neon2_blocks extern void addmulmod(fe1305x2 *r, const fe1305x2 *x, const fe1305x2 *y, const fe1305x2 *c); extern int blocks(fe1305x2 *h, const fe1305x2 *precomp, const uint8_t *in, unsigned int inlen); static void freeze(fe1305x2 *r) { int i; uint32_t x0 = r->v[0]; uint32_t x1 = r->v[2]; uint32_t x2 = r->v[4]; uint32_t x3 = r->v[6]; uint32_t x4 = r->v[8]; uint32_t y0; uint32_t y1; uint32_t y2; uint32_t y3; uint32_t y4; uint32_t swap; for (i = 0; i < 3; ++i) { x1 += x0 >> 26; x0 &= 0x3ffffff; x2 += x1 >> 26; x1 &= 0x3ffffff; x3 += x2 >> 26; x2 &= 0x3ffffff; x4 += x3 >> 26; x3 &= 0x3ffffff; x0 += 5 * (x4 >> 26); x4 &= 0x3ffffff; } y0 = x0 + 5; y1 = x1 + (y0 >> 26); y0 &= 0x3ffffff; y2 = x2 + (y1 >> 26); y1 &= 0x3ffffff; y3 = x3 + (y2 >> 26); y2 &= 0x3ffffff; y4 = x4 + (y3 >> 26); y3 &= 0x3ffffff; swap = -(y4 >> 26); y4 &= 0x3ffffff; y0 ^= x0; y1 ^= x1; y2 ^= x2; y3 ^= x3; y4 ^= x4; y0 &= swap; y1 &= swap; y2 &= swap; y3 &= swap; y4 &= swap; y0 ^= x0; y1 ^= x1; y2 ^= x2; y3 ^= x3; y4 ^= x4; r->v[0] = y0; r->v[2] = y1; r->v[4] = y2; r->v[6] = y3; r->v[8] = y4; } static void fe1305x2_tobytearray(uint8_t *r, fe1305x2 *x) { uint32_t x0 = x->v[0]; uint32_t x1 = x->v[2]; uint32_t x2 = x->v[4]; uint32_t x3 = x->v[6]; uint32_t x4 = x->v[8]; x1 += x0 >> 26; x0 &= 0x3ffffff; x2 += x1 >> 26; x1 &= 0x3ffffff; x3 += x2 >> 26; x2 &= 0x3ffffff; x4 += x3 >> 26; x3 &= 0x3ffffff; *(uint32_t *)r = x0 + (x1 << 26); *(uint32_t *)(r + 4) = (x1 >> 6) + (x2 << 20); *(uint32_t *)(r + 8) = (x2 >> 12) + (x3 << 14); *(uint32_t *)(r + 12) = (x3 >> 18) + (x4 << 8); } // load32 exists to avoid breaking strict aliasing rules in // fe1305x2_frombytearray. static uint32_t load32(uint8_t *t) { uint32_t tmp; OPENSSL_memcpy(&tmp, t, sizeof(tmp)); return tmp; } static void fe1305x2_frombytearray(fe1305x2 *r, const uint8_t *x, unsigned long long xlen) { unsigned i; uint8_t t[17]; for (i = 0; (i < 16) && (i < xlen); i++) { t[i] = x[i]; } xlen -= i; x += i; t[i++] = 1; for (; i < 17; i++) { t[i] = 0; } r->v[0] = 0x3ffffff & load32(t); r->v[2] = 0x3ffffff & (load32(t + 3) >> 2); r->v[4] = 0x3ffffff & (load32(t + 6) >> 4); r->v[6] = 0x3ffffff & (load32(t + 9) >> 6); r->v[8] = load32(t + 13); if (xlen) { for (i = 0; (i < 16) && (i < xlen); i++) { t[i] = x[i]; } t[i++] = 1; for (; i < 17; i++) { t[i] = 0; } r->v[1] = 0x3ffffff & load32(t); r->v[3] = 0x3ffffff & (load32(t + 3) >> 2); r->v[5] = 0x3ffffff & (load32(t + 6) >> 4); r->v[7] = 0x3ffffff & (load32(t + 9) >> 6); r->v[9] = load32(t + 13); } else { r->v[1] = r->v[3] = r->v[5] = r->v[7] = r->v[9] = 0; } } static const alignas(16) fe1305x2 zero; struct poly1305_state_st { uint8_t data[sizeof(fe1305x2[5]) + 128]; uint8_t buf[32]; unsigned int buf_used; uint8_t key[16]; }; void CRYPTO_poly1305_init_neon(poly1305_state *state, const uint8_t key[32]) { struct poly1305_state_st *st = (struct poly1305_state_st *)(state); fe1305x2 *const r = (fe1305x2 *)(st->data + (15 & (-(int)st->data))); fe1305x2 *const h = r + 1; fe1305x2 *const c = h + 1; fe1305x2 *const precomp = c + 1; unsigned int j; r->v[1] = r->v[0] = 0x3ffffff & *(uint32_t *)key; r->v[3] = r->v[2] = 0x3ffff03 & ((*(uint32_t *)(key + 3)) >> 2); r->v[5] = r->v[4] = 0x3ffc0ff & ((*(uint32_t *)(key + 6)) >> 4); r->v[7] = r->v[6] = 0x3f03fff & ((*(uint32_t *)(key + 9)) >> 6); r->v[9] = r->v[8] = 0x00fffff & ((*(uint32_t *)(key + 12)) >> 8); for (j = 0; j < 10; j++) { h->v[j] = 0; // XXX: should fast-forward a bit } addmulmod(precomp, r, r, &zero); // precompute r^2 addmulmod(precomp + 1, precomp, precomp, &zero); // precompute r^4 OPENSSL_memcpy(st->key, key + 16, 16); st->buf_used = 0; } void CRYPTO_poly1305_update_neon(poly1305_state *state, const uint8_t *in, size_t in_len) { struct poly1305_state_st *st = (struct poly1305_state_st *)(state); fe1305x2 *const r = (fe1305x2 *)(st->data + (15 & (-(int)st->data))); fe1305x2 *const h = r + 1; fe1305x2 *const c = h + 1; fe1305x2 *const precomp = c + 1; unsigned int i; if (st->buf_used) { unsigned int todo = 32 - st->buf_used; if (todo > in_len) { todo = in_len; } for (i = 0; i < todo; i++) { st->buf[st->buf_used + i] = in[i]; } st->buf_used += todo; in_len -= todo; in += todo; if (st->buf_used == sizeof(st->buf) && in_len) { addmulmod(h, h, precomp, &zero); fe1305x2_frombytearray(c, st->buf, sizeof(st->buf)); for (i = 0; i < 10; i++) { h->v[i] += c->v[i]; } st->buf_used = 0; } } while (in_len > 32) { unsigned int tlen = 1048576; if (in_len < tlen) { tlen = in_len; } tlen -= blocks(h, precomp, in, tlen); in_len -= tlen; in += tlen; } if (in_len) { for (i = 0; i < in_len; i++) { st->buf[i] = in[i]; } st->buf_used = in_len; } } void CRYPTO_poly1305_finish_neon(poly1305_state *state, uint8_t mac[16]) { struct poly1305_state_st *st = (struct poly1305_state_st *)(state); fe1305x2 *const r = (fe1305x2 *)(st->data + (15 & (-(int)st->data))); fe1305x2 *const h = r + 1; fe1305x2 *const c = h + 1; fe1305x2 *const precomp = c + 1; addmulmod(h, h, precomp, &zero); if (st->buf_used > 16) { fe1305x2_frombytearray(c, st->buf, st->buf_used); precomp->v[1] = r->v[1]; precomp->v[3] = r->v[3]; precomp->v[5] = r->v[5]; precomp->v[7] = r->v[7]; precomp->v[9] = r->v[9]; addmulmod(h, h, precomp, c); } else if (st->buf_used > 0) { fe1305x2_frombytearray(c, st->buf, st->buf_used); r->v[1] = 1; r->v[3] = 0; r->v[5] = 0; r->v[7] = 0; r->v[9] = 0; addmulmod(h, h, r, c); } h->v[0] += h->v[1]; h->v[2] += h->v[3]; h->v[4] += h->v[5]; h->v[6] += h->v[7]; h->v[8] += h->v[9]; freeze(h); fe1305x2_frombytearray(c, st->key, 16); c->v[8] ^= (1 << 24); h->v[0] += c->v[0]; h->v[2] += c->v[2]; h->v[4] += c->v[4]; h->v[6] += c->v[6]; h->v[8] += c->v[8]; fe1305x2_tobytearray(mac, h); } #endif // OPENSSL_POLY1305_NEON