/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include <openssl/md4.h> #include <stdlib.h> #include <string.h> #include "../../internal.h" uint8_t *MD4(const uint8_t *data, size_t len, uint8_t *out) { MD4_CTX ctx; MD4_Init(&ctx); MD4_Update(&ctx, data, len); MD4_Final(out, &ctx); return out; } // Implemented from RFC1186 The MD4 Message-Digest Algorithm. int MD4_Init(MD4_CTX *md4) { OPENSSL_memset(md4, 0, sizeof(MD4_CTX)); md4->h[0] = 0x67452301UL; md4->h[1] = 0xefcdab89UL; md4->h[2] = 0x98badcfeUL; md4->h[3] = 0x10325476UL; return 1; } void md4_block_data_order(uint32_t *state, const uint8_t *data, size_t num); #define DATA_ORDER_IS_LITTLE_ENDIAN #define HASH_CTX MD4_CTX #define HASH_CBLOCK 64 #define HASH_UPDATE MD4_Update #define HASH_TRANSFORM MD4_Transform #define HASH_FINAL MD4_Final #define HASH_MAKE_STRING(c, s) \ do { \ uint32_t ll; \ ll = (c)->h[0]; \ HOST_l2c(ll, (s)); \ ll = (c)->h[1]; \ HOST_l2c(ll, (s)); \ ll = (c)->h[2]; \ HOST_l2c(ll, (s)); \ ll = (c)->h[3]; \ HOST_l2c(ll, (s)); \ } while (0) #define HASH_BLOCK_DATA_ORDER md4_block_data_order #include "../digest/md32_common.h" // As pointed out by Wei Dai <weidai@eskimo.com>, the above can be // simplified to the code below. Wei attributes these optimizations // to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel. #define F(b, c, d) ((((c) ^ (d)) & (b)) ^ (d)) #define G(b, c, d) (((b) & (c)) | ((b) & (d)) | ((c) & (d))) #define H(b, c, d) ((b) ^ (c) ^ (d)) #define ROTATE(a, n) (((a) << (n)) | ((a) >> (32 - (n)))) #define R0(a, b, c, d, k, s, t) \ do { \ (a) += ((k) + (t) + F((b), (c), (d))); \ (a) = ROTATE(a, s); \ } while (0) #define R1(a, b, c, d, k, s, t) \ do { \ (a) += ((k) + (t) + G((b), (c), (d))); \ (a) = ROTATE(a, s); \ } while (0) #define R2(a, b, c, d, k, s, t) \ do { \ (a) += ((k) + (t) + H((b), (c), (d))); \ (a) = ROTATE(a, s); \ } while (0) void md4_block_data_order(uint32_t *state, const uint8_t *data, size_t num) { uint32_t A, B, C, D, l; uint32_t X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15; A = state[0]; B = state[1]; C = state[2]; D = state[3]; for (; num--;) { HOST_c2l(data, l); X0 = l; HOST_c2l(data, l); X1 = l; // Round 0 R0(A, B, C, D, X0, 3, 0); HOST_c2l(data, l); X2 = l; R0(D, A, B, C, X1, 7, 0); HOST_c2l(data, l); X3 = l; R0(C, D, A, B, X2, 11, 0); HOST_c2l(data, l); X4 = l; R0(B, C, D, A, X3, 19, 0); HOST_c2l(data, l); X5 = l; R0(A, B, C, D, X4, 3, 0); HOST_c2l(data, l); X6 = l; R0(D, A, B, C, X5, 7, 0); HOST_c2l(data, l); X7 = l; R0(C, D, A, B, X6, 11, 0); HOST_c2l(data, l); X8 = l; R0(B, C, D, A, X7, 19, 0); HOST_c2l(data, l); X9 = l; R0(A, B, C, D, X8, 3, 0); HOST_c2l(data, l); X10 = l; R0(D, A, B, C, X9, 7, 0); HOST_c2l(data, l); X11 = l; R0(C, D, A, B, X10, 11, 0); HOST_c2l(data, l); X12 = l; R0(B, C, D, A, X11, 19, 0); HOST_c2l(data, l); X13 = l; R0(A, B, C, D, X12, 3, 0); HOST_c2l(data, l); X14 = l; R0(D, A, B, C, X13, 7, 0); HOST_c2l(data, l); X15 = l; R0(C, D, A, B, X14, 11, 0); R0(B, C, D, A, X15, 19, 0); // Round 1 R1(A, B, C, D, X0, 3, 0x5A827999L); R1(D, A, B, C, X4, 5, 0x5A827999L); R1(C, D, A, B, X8, 9, 0x5A827999L); R1(B, C, D, A, X12, 13, 0x5A827999L); R1(A, B, C, D, X1, 3, 0x5A827999L); R1(D, A, B, C, X5, 5, 0x5A827999L); R1(C, D, A, B, X9, 9, 0x5A827999L); R1(B, C, D, A, X13, 13, 0x5A827999L); R1(A, B, C, D, X2, 3, 0x5A827999L); R1(D, A, B, C, X6, 5, 0x5A827999L); R1(C, D, A, B, X10, 9, 0x5A827999L); R1(B, C, D, A, X14, 13, 0x5A827999L); R1(A, B, C, D, X3, 3, 0x5A827999L); R1(D, A, B, C, X7, 5, 0x5A827999L); R1(C, D, A, B, X11, 9, 0x5A827999L); R1(B, C, D, A, X15, 13, 0x5A827999L); // Round 2 R2(A, B, C, D, X0, 3, 0x6ED9EBA1L); R2(D, A, B, C, X8, 9, 0x6ED9EBA1L); R2(C, D, A, B, X4, 11, 0x6ED9EBA1L); R2(B, C, D, A, X12, 15, 0x6ED9EBA1L); R2(A, B, C, D, X2, 3, 0x6ED9EBA1L); R2(D, A, B, C, X10, 9, 0x6ED9EBA1L); R2(C, D, A, B, X6, 11, 0x6ED9EBA1L); R2(B, C, D, A, X14, 15, 0x6ED9EBA1L); R2(A, B, C, D, X1, 3, 0x6ED9EBA1L); R2(D, A, B, C, X9, 9, 0x6ED9EBA1L); R2(C, D, A, B, X5, 11, 0x6ED9EBA1L); R2(B, C, D, A, X13, 15, 0x6ED9EBA1L); R2(A, B, C, D, X3, 3, 0x6ED9EBA1L); R2(D, A, B, C, X11, 9, 0x6ED9EBA1L); R2(C, D, A, B, X7, 11, 0x6ED9EBA1L); R2(B, C, D, A, X15, 15, 0x6ED9EBA1L); A = state[0] += A; B = state[1] += B; C = state[2] += C; D = state[3] += D; } } #undef DATA_ORDER_IS_LITTLE_ENDIAN #undef HASH_CTX #undef HASH_CBLOCK #undef HASH_UPDATE #undef HASH_TRANSFORM #undef HASH_FINAL #undef HASH_MAKE_STRING #undef HASH_BLOCK_DATA_ORDER #undef F #undef G #undef H #undef ROTATE #undef R0 #undef R1 #undef R2 #undef HOST_c2l #undef HOST_l2c