/* * Single-precision 2^x function. * * Copyright (c) 2017-2018, Arm Limited. * SPDX-License-Identifier: MIT */ #include <math.h> #include <stdint.h> #include "math_config.h" /* EXP2F_TABLE_BITS = 5 EXP2F_POLY_ORDER = 3 ULP error: 0.502 (nearest rounding.) Relative error: 1.69 * 2^-34 in [-1/64, 1/64] (before rounding.) Wrong count: 168353 (all nearest rounding wrong results with fma.) Non-nearest ULP error: 1 (rounded ULP error) */ #define N (1 << EXP2F_TABLE_BITS) #define T __exp2f_data.tab #define C __exp2f_data.poly #define SHIFT __exp2f_data.shift_scaled static inline uint32_t top12 (float x) { return asuint (x) >> 20; } float exp2f (float x) { uint32_t abstop; uint64_t ki, t; /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ double_t kd, xd, z, r, r2, y, s; xd = (double_t) x; abstop = top12 (x) & 0x7ff; if (unlikely (abstop >= top12 (128.0f))) { /* |x| >= 128 or x is nan. */ if (asuint (x) == asuint (-INFINITY)) return 0.0f; if (abstop >= top12 (INFINITY)) return x + x; if (x > 0.0f) return __math_oflowf (0); if (x <= -150.0f) return __math_uflowf (0); #if WANT_ERRNO_UFLOW if (x < -149.0f) return __math_may_uflowf (0); #endif } /* x = k/N + r with r in [-1/(2N), 1/(2N)] and int k. */ kd = eval_as_double (xd + SHIFT); ki = asuint64 (kd); kd -= SHIFT; /* k/N for int k. */ r = xd - kd; /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */ t = T[ki % N]; t += ki << (52 - EXP2F_TABLE_BITS); s = asdouble (t); z = C[0] * r + C[1]; r2 = r * r; y = C[2] * r + 1; y = z * r2 + y; y = y * s; return eval_as_float (y); } #if USE_GLIBC_ABI strong_alias (exp2f, __exp2f_finite) hidden_alias (exp2f, __ieee754_exp2f) #endif