""" @package antlr3.tree @brief ANTLR3 runtime package, tree module This module contains all support classes for AST construction and tree parsers. """ # begin[licence] # # [The "BSD licence"] # Copyright (c) 2005-2012 Terence Parr # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. The name of the author may not be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # end[licence] # lot's of docstrings are missing, don't complain for now... # pylint: disable-msg=C0111 import re from antlr3.constants import UP, DOWN, EOF, INVALID_TOKEN_TYPE from antlr3.recognizers import BaseRecognizer, RuleReturnScope from antlr3.streams import IntStream from antlr3.tokens import CommonToken, Token, INVALID_TOKEN from antlr3.exceptions import MismatchedTreeNodeException, \ MissingTokenException, UnwantedTokenException, MismatchedTokenException, \ NoViableAltException ############################################################################ # # tree related exceptions # ############################################################################ class RewriteCardinalityException(RuntimeError): """ @brief Base class for all exceptions thrown during AST rewrite construction. This signifies a case where the cardinality of two or more elements in a subrule are different: (ID INT)+ where |ID|!=|INT| """ def __init__(self, elementDescription): RuntimeError.__init__(self, elementDescription) self.elementDescription = elementDescription def getMessage(self): return self.elementDescription class RewriteEarlyExitException(RewriteCardinalityException): """@brief No elements within a (...)+ in a rewrite rule""" def __init__(self, elementDescription=None): RewriteCardinalityException.__init__(self, elementDescription) class RewriteEmptyStreamException(RewriteCardinalityException): """ @brief Ref to ID or expr but no tokens in ID stream or subtrees in expr stream """ pass ############################################################################ # # basic Tree and TreeAdaptor interfaces # ############################################################################ class Tree(object): """ @brief Abstract baseclass for tree nodes. What does a tree look like? ANTLR has a number of support classes such as CommonTreeNodeStream that work on these kinds of trees. You don't have to make your trees implement this interface, but if you do, you'll be able to use more support code. NOTE: When constructing trees, ANTLR can build any kind of tree; it can even use Token objects as trees if you add a child list to your tokens. This is a tree node without any payload; just navigation and factory stuff. """ def getChild(self, i): raise NotImplementedError def getChildCount(self): raise NotImplementedError def getParent(self): """Tree tracks parent and child index now > 3.0""" raise NotImplementedError def setParent(self, t): """Tree tracks parent and child index now > 3.0""" raise NotImplementedError def hasAncestor(self, ttype): """Walk upwards looking for ancestor with this token type.""" raise NotImplementedError def getAncestor(self, ttype): """Walk upwards and get first ancestor with this token type.""" raise NotImplementedError def getAncestors(self): """Return a list of all ancestors of this node. The first node of list is the root and the last is the parent of this node. """ raise NotImplementedError def getChildIndex(self): """This node is what child index? 0..n-1""" raise NotImplementedError def setChildIndex(self, index): """This node is what child index? 0..n-1""" raise NotImplementedError def freshenParentAndChildIndexes(self): """Set the parent and child index values for all children""" raise NotImplementedError def addChild(self, t): """ Add t as a child to this node. If t is null, do nothing. If t is nil, add all children of t to this' children. """ raise NotImplementedError def setChild(self, i, t): """Set ith child (0..n-1) to t; t must be non-null and non-nil node""" raise NotImplementedError def deleteChild(self, i): raise NotImplementedError def replaceChildren(self, startChildIndex, stopChildIndex, t): """ Delete children from start to stop and replace with t even if t is a list (nil-root tree). num of children can increase or decrease. For huge child lists, inserting children can force walking rest of children to set their childindex; could be slow. """ raise NotImplementedError def isNil(self): """ Indicates the node is a nil node but may still have children, meaning the tree is a flat list. """ raise NotImplementedError def getTokenStartIndex(self): """ What is the smallest token index (indexing from 0) for this node and its children? """ raise NotImplementedError def setTokenStartIndex(self, index): raise NotImplementedError def getTokenStopIndex(self): """ What is the largest token index (indexing from 0) for this node and its children? """ raise NotImplementedError def setTokenStopIndex(self, index): raise NotImplementedError def dupNode(self): raise NotImplementedError def getType(self): """Return a token type; needed for tree parsing.""" raise NotImplementedError def getText(self): raise NotImplementedError def getLine(self): """ In case we don't have a token payload, what is the line for errors? """ raise NotImplementedError def getCharPositionInLine(self): raise NotImplementedError def toStringTree(self): raise NotImplementedError def toString(self): raise NotImplementedError class TreeAdaptor(object): """ @brief Abstract baseclass for tree adaptors. How to create and navigate trees. Rather than have a separate factory and adaptor, I've merged them. Makes sense to encapsulate. This takes the place of the tree construction code generated in the generated code in 2.x and the ASTFactory. I do not need to know the type of a tree at all so they are all generic Objects. This may increase the amount of typecasting needed. :( """ # C o n s t r u c t i o n def createWithPayload(self, payload): """ Create a tree node from Token object; for CommonTree type trees, then the token just becomes the payload. This is the most common create call. Override if you want another kind of node to be built. """ raise NotImplementedError def dupNode(self, treeNode): """Duplicate a single tree node. Override if you want another kind of node to be built.""" raise NotImplementedError def dupTree(self, tree): """Duplicate tree recursively, using dupNode() for each node""" raise NotImplementedError def nil(self): """ Return a nil node (an empty but non-null node) that can hold a list of element as the children. If you want a flat tree (a list) use "t=adaptor.nil(); t.addChild(x); t.addChild(y);" """ raise NotImplementedError def errorNode(self, input, start, stop, exc): """ Return a tree node representing an error. This node records the tokens consumed during error recovery. The start token indicates the input symbol at which the error was detected. The stop token indicates the last symbol consumed during recovery. You must specify the input stream so that the erroneous text can be packaged up in the error node. The exception could be useful to some applications; default implementation stores ptr to it in the CommonErrorNode. This only makes sense during token parsing, not tree parsing. Tree parsing should happen only when parsing and tree construction succeed. """ raise NotImplementedError def isNil(self, tree): """Is tree considered a nil node used to make lists of child nodes?""" raise NotImplementedError def addChild(self, t, child): """ Add a child to the tree t. If child is a flat tree (a list), make all in list children of t. Warning: if t has no children, but child does and child isNil then you can decide it is ok to move children to t via t.children = child.children; i.e., without copying the array. Just make sure that this is consistent with have the user will build ASTs. Do nothing if t or child is null. """ raise NotImplementedError def becomeRoot(self, newRoot, oldRoot): """ If oldRoot is a nil root, just copy or move the children to newRoot. If not a nil root, make oldRoot a child of newRoot. old=^(nil a b c), new=r yields ^(r a b c) old=^(a b c), new=r yields ^(r ^(a b c)) If newRoot is a nil-rooted single child tree, use the single child as the new root node. old=^(nil a b c), new=^(nil r) yields ^(r a b c) old=^(a b c), new=^(nil r) yields ^(r ^(a b c)) If oldRoot was null, it's ok, just return newRoot (even if isNil). old=null, new=r yields r old=null, new=^(nil r) yields ^(nil r) Return newRoot. Throw an exception if newRoot is not a simple node or nil root with a single child node--it must be a root node. If newRoot is ^(nil x) return x as newRoot. Be advised that it's ok for newRoot to point at oldRoot's children; i.e., you don't have to copy the list. We are constructing these nodes so we should have this control for efficiency. """ raise NotImplementedError def rulePostProcessing(self, root): """ Given the root of the subtree created for this rule, post process it to do any simplifications or whatever you want. A required behavior is to convert ^(nil singleSubtree) to singleSubtree as the setting of start/stop indexes relies on a single non-nil root for non-flat trees. Flat trees such as for lists like "idlist : ID+ ;" are left alone unless there is only one ID. For a list, the start/stop indexes are set in the nil node. This method is executed after all rule tree construction and right before setTokenBoundaries(). """ raise NotImplementedError def getUniqueID(self, node): """For identifying trees. How to identify nodes so we can say "add node to a prior node"? Even becomeRoot is an issue. Use System.identityHashCode(node) usually. """ raise NotImplementedError # R e w r i t e R u l e s def createFromToken(self, tokenType, fromToken, text=None): """ Create a new node derived from a token, with a new token type and (optionally) new text. This is invoked from an imaginary node ref on right side of a rewrite rule as IMAG[$tokenLabel] or IMAG[$tokenLabel "IMAG"]. This should invoke createToken(Token). """ raise NotImplementedError def createFromType(self, tokenType, text): """Create a new node derived from a token, with a new token type. This is invoked from an imaginary node ref on right side of a rewrite rule as IMAG["IMAG"]. This should invoke createToken(int,String). """ raise NotImplementedError # C o n t e n t def getType(self, t): """For tree parsing, I need to know the token type of a node""" raise NotImplementedError def setType(self, t, type): """Node constructors can set the type of a node""" raise NotImplementedError def getText(self, t): raise NotImplementedError def setText(self, t, text): """Node constructors can set the text of a node""" raise NotImplementedError def getToken(self, t): """Return the token object from which this node was created. Currently used only for printing an error message. The error display routine in BaseRecognizer needs to display where the input the error occurred. If your tree of limitation does not store information that can lead you to the token, you can create a token filled with the appropriate information and pass that back. See BaseRecognizer.getErrorMessage(). """ raise NotImplementedError def setTokenBoundaries(self, t, startToken, stopToken): """ Where are the bounds in the input token stream for this node and all children? Each rule that creates AST nodes will call this method right before returning. Flat trees (i.e., lists) will still usually have a nil root node just to hold the children list. That node would contain the start/stop indexes then. """ raise NotImplementedError def getTokenStartIndex(self, t): """ Get the token start index for this subtree; return -1 if no such index """ raise NotImplementedError def getTokenStopIndex(self, t): """ Get the token stop index for this subtree; return -1 if no such index """ raise NotImplementedError # N a v i g a t i o n / T r e e P a r s i n g def getChild(self, t, i): """Get a child 0..n-1 node""" raise NotImplementedError def setChild(self, t, i, child): """Set ith child (0..n-1) to t; t must be non-null and non-nil node""" raise NotImplementedError def deleteChild(self, t, i): """Remove ith child and shift children down from right.""" raise NotImplementedError def getChildCount(self, t): """How many children? If 0, then this is a leaf node""" raise NotImplementedError def getParent(self, t): """ Who is the parent node of this node; if null, implies node is root. If your node type doesn't handle this, it's ok but the tree rewrites in tree parsers need this functionality. """ raise NotImplementedError def setParent(self, t, parent): """ Who is the parent node of this node; if null, implies node is root. If your node type doesn't handle this, it's ok but the tree rewrites in tree parsers need this functionality. """ raise NotImplementedError def getChildIndex(self, t): """ What index is this node in the child list? Range: 0..n-1 If your node type doesn't handle this, it's ok but the tree rewrites in tree parsers need this functionality. """ raise NotImplementedError def setChildIndex(self, t, index): """ What index is this node in the child list? Range: 0..n-1 If your node type doesn't handle this, it's ok but the tree rewrites in tree parsers need this functionality. """ raise NotImplementedError def replaceChildren(self, parent, startChildIndex, stopChildIndex, t): """ Replace from start to stop child index of parent with t, which might be a list. Number of children may be different after this call. If parent is null, don't do anything; must be at root of overall tree. Can't replace whatever points to the parent externally. Do nothing. """ raise NotImplementedError # Misc def create(self, *args): """ Deprecated, use createWithPayload, createFromToken or createFromType. This method only exists to mimic the Java interface of TreeAdaptor. """ if len(args) == 1 and isinstance(args[0], Token): # Object create(Token payload); ## warnings.warn( ## "Using create() is deprecated, use createWithPayload()", ## DeprecationWarning, ## stacklevel=2 ## ) return self.createWithPayload(args[0]) if (len(args) == 2 and isinstance(args[0], int) and isinstance(args[1], Token)): # Object create(int tokenType, Token fromToken); ## warnings.warn( ## "Using create() is deprecated, use createFromToken()", ## DeprecationWarning, ## stacklevel=2 ## ) return self.createFromToken(args[0], args[1]) if (len(args) == 3 and isinstance(args[0], int) and isinstance(args[1], Token) and isinstance(args[2], str)): # Object create(int tokenType, Token fromToken, String text); ## warnings.warn( ## "Using create() is deprecated, use createFromToken()", ## DeprecationWarning, ## stacklevel=2 ## ) return self.createFromToken(args[0], args[1], args[2]) if (len(args) == 2 and isinstance(args[0], int) and isinstance(args[1], str)): # Object create(int tokenType, String text); ## warnings.warn( ## "Using create() is deprecated, use createFromType()", ## DeprecationWarning, ## stacklevel=2 ## ) return self.createFromType(args[0], args[1]) raise TypeError( "No create method with this signature found: {}" .format(', '.join(type(v).__name__ for v in args))) ############################################################################ # # base implementation of Tree and TreeAdaptor # # Tree # \- BaseTree # # TreeAdaptor # \- BaseTreeAdaptor # ############################################################################ class BaseTree(Tree): """ @brief A generic tree implementation with no payload. You must subclass to actually have any user data. ANTLR v3 uses a list of children approach instead of the child-sibling approach in v2. A flat tree (a list) is an empty node whose children represent the list. An empty, but non-null node is called "nil". """ # BaseTree is abstract, no need to complain about not implemented abstract # methods # pylint: disable-msg=W0223 def __init__(self, node=None): """ Create a new node from an existing node does nothing for BaseTree as there are no fields other than the children list, which cannot be copied as the children are not considered part of this node. """ super().__init__() self.children = [] self.parent = None self.childIndex = 0 def getChild(self, i): try: return self.children[i] except IndexError: return None def getChildren(self): """@brief Get the children internal List Note that if you directly mess with the list, do so at your own risk. """ # FIXME: mark as deprecated return self.children def getFirstChildWithType(self, treeType): for child in self.children: if child.getType() == treeType: return child return None def getChildCount(self): return len(self.children) def addChild(self, childTree): """Add t as child of this node. Warning: if t has no children, but child does and child isNil then this routine moves children to t via t.children = child.children; i.e., without copying the array. """ # this implementation is much simpler and probably less efficient # than the mumbo-jumbo that Ter did for the Java runtime. if childTree is None: return if childTree.isNil(): # t is an empty node possibly with children if self.children is childTree.children: raise ValueError("attempt to add child list to itself") # fix parent pointer and childIndex for new children for idx, child in enumerate(childTree.children): child.parent = self child.childIndex = len(self.children) + idx self.children += childTree.children else: # child is not nil (don't care about children) self.children.append(childTree) childTree.parent = self childTree.childIndex = len(self.children) - 1 def addChildren(self, children): """Add all elements of kids list as children of this node""" self.children += children def setChild(self, i, t): if t is None: return if t.isNil(): raise ValueError("Can't set single child to a list") self.children[i] = t t.parent = self t.childIndex = i def deleteChild(self, i): killed = self.children[i] del self.children[i] # walk rest and decrement their child indexes for idx, child in enumerate(self.children[i:]): child.childIndex = i + idx return killed def replaceChildren(self, startChildIndex, stopChildIndex, newTree): """ Delete children from start to stop and replace with t even if t is a list (nil-root tree). num of children can increase or decrease. For huge child lists, inserting children can force walking rest of children to set their childindex; could be slow. """ if (startChildIndex >= len(self.children) or stopChildIndex >= len(self.children)): raise IndexError("indexes invalid") replacingHowMany = stopChildIndex - startChildIndex + 1 # normalize to a list of children to add: newChildren if newTree.isNil(): newChildren = newTree.children else: newChildren = [newTree] replacingWithHowMany = len(newChildren) delta = replacingHowMany - replacingWithHowMany if delta == 0: # if same number of nodes, do direct replace for idx, child in enumerate(newChildren): self.children[idx + startChildIndex] = child child.parent = self child.childIndex = idx + startChildIndex else: # length of children changes... # ...delete replaced segment... del self.children[startChildIndex:stopChildIndex+1] # ...insert new segment... self.children[startChildIndex:startChildIndex] = newChildren # ...and fix indeces self.freshenParentAndChildIndexes(startChildIndex) def isNil(self): return False def freshenParentAndChildIndexes(self, offset=0): for idx, child in enumerate(self.children[offset:]): child.childIndex = idx + offset child.parent = self def sanityCheckParentAndChildIndexes(self, parent=None, i=-1): if parent != self.parent: raise ValueError( "parents don't match; expected {!r} found {!r}" .format(parent, self.parent)) if i != self.childIndex: raise ValueError( "child indexes don't match; expected {} found {}" .format(i, self.childIndex)) for idx, child in enumerate(self.children): child.sanityCheckParentAndChildIndexes(self, idx) def getChildIndex(self): """BaseTree doesn't track child indexes.""" return 0 def setChildIndex(self, index): """BaseTree doesn't track child indexes.""" pass def getParent(self): """BaseTree doesn't track parent pointers.""" return None def setParent(self, t): """BaseTree doesn't track parent pointers.""" pass def hasAncestor(self, ttype): """Walk upwards looking for ancestor with this token type.""" return self.getAncestor(ttype) is not None def getAncestor(self, ttype): """Walk upwards and get first ancestor with this token type.""" t = self.getParent() while t is not None: if t.getType() == ttype: return t t = t.getParent() return None def getAncestors(self): """Return a list of all ancestors of this node. The first node of list is the root and the last is the parent of this node. """ if self.getParent() is None: return None ancestors = [] t = self.getParent() while t is not None: ancestors.insert(0, t) # insert at start t = t.getParent() return ancestors def toStringTree(self): """Print out a whole tree not just a node""" if len(self.children) == 0: return self.toString() buf = [] if not self.isNil(): buf.append('(') buf.append(self.toString()) buf.append(' ') for i, child in enumerate(self.children): if i > 0: buf.append(' ') buf.append(child.toStringTree()) if not self.isNil(): buf.append(')') return ''.join(buf) def getLine(self): return 0 def getCharPositionInLine(self): return 0 def toString(self): """Override to say how a node (not a tree) should look as text""" raise NotImplementedError class BaseTreeAdaptor(TreeAdaptor): """ @brief A TreeAdaptor that works with any Tree implementation. """ # BaseTreeAdaptor is abstract, no need to complain about not implemented # abstract methods # pylint: disable-msg=W0223 def nil(self): return self.createWithPayload(None) def errorNode(self, input, start, stop, exc): """ create tree node that holds the start and stop tokens associated with an error. If you specify your own kind of tree nodes, you will likely have to override this method. CommonTree returns Token.INVALID_TOKEN_TYPE if no token payload but you might have to set token type for diff node type. You don't have to subclass CommonErrorNode; you will likely need to subclass your own tree node class to avoid class cast exception. """ return CommonErrorNode(input, start, stop, exc) def isNil(self, tree): return tree.isNil() def dupTree(self, t, parent=None): """ This is generic in the sense that it will work with any kind of tree (not just Tree interface). It invokes the adaptor routines not the tree node routines to do the construction. """ if t is None: return None newTree = self.dupNode(t) # ensure new subtree root has parent/child index set # same index in new tree self.setChildIndex(newTree, self.getChildIndex(t)) self.setParent(newTree, parent) for i in range(self.getChildCount(t)): child = self.getChild(t, i) newSubTree = self.dupTree(child, t) self.addChild(newTree, newSubTree) return newTree def addChild(self, tree, child): """ Add a child to the tree t. If child is a flat tree (a list), make all in list children of t. Warning: if t has no children, but child does and child isNil then you can decide it is ok to move children to t via t.children = child.children; i.e., without copying the array. Just make sure that this is consistent with have the user will build ASTs. """ #if isinstance(child, Token): # child = self.createWithPayload(child) if tree is not None and child is not None: tree.addChild(child) def becomeRoot(self, newRoot, oldRoot): """ If oldRoot is a nil root, just copy or move the children to newRoot. If not a nil root, make oldRoot a child of newRoot. old=^(nil a b c), new=r yields ^(r a b c) old=^(a b c), new=r yields ^(r ^(a b c)) If newRoot is a nil-rooted single child tree, use the single child as the new root node. old=^(nil a b c), new=^(nil r) yields ^(r a b c) old=^(a b c), new=^(nil r) yields ^(r ^(a b c)) If oldRoot was null, it's ok, just return newRoot (even if isNil). old=null, new=r yields r old=null, new=^(nil r) yields ^(nil r) Return newRoot. Throw an exception if newRoot is not a simple node or nil root with a single child node--it must be a root node. If newRoot is ^(nil x) return x as newRoot. Be advised that it's ok for newRoot to point at oldRoot's children; i.e., you don't have to copy the list. We are constructing these nodes so we should have this control for efficiency. """ if isinstance(newRoot, Token): newRoot = self.create(newRoot) if oldRoot is None: return newRoot if not isinstance(newRoot, CommonTree): newRoot = self.createWithPayload(newRoot) # handle ^(nil real-node) if newRoot.isNil(): nc = newRoot.getChildCount() if nc == 1: newRoot = newRoot.getChild(0) elif nc > 1: # TODO: make tree run time exceptions hierarchy raise RuntimeError("more than one node as root") # add oldRoot to newRoot; addChild takes care of case where oldRoot # is a flat list (i.e., nil-rooted tree). All children of oldRoot # are added to newRoot. newRoot.addChild(oldRoot) return newRoot def rulePostProcessing(self, root): """Transform ^(nil x) to x and nil to null""" if root is not None and root.isNil(): if root.getChildCount() == 0: root = None elif root.getChildCount() == 1: root = root.getChild(0) # whoever invokes rule will set parent and child index root.setParent(None) root.setChildIndex(-1) return root def createFromToken(self, tokenType, fromToken, text=None): if fromToken is None: return self.createFromType(tokenType, text) assert isinstance(tokenType, int), type(tokenType).__name__ assert isinstance(fromToken, Token), type(fromToken).__name__ assert text is None or isinstance(text, str), type(text).__name__ fromToken = self.createToken(fromToken) fromToken.type = tokenType if text is not None: fromToken.text = text t = self.createWithPayload(fromToken) return t def createFromType(self, tokenType, text): assert isinstance(tokenType, int), type(tokenType).__name__ assert isinstance(text, str) or text is None, type(text).__name__ fromToken = self.createToken(tokenType=tokenType, text=text) t = self.createWithPayload(fromToken) return t def getType(self, t): return t.getType() def setType(self, t, type): raise RuntimeError("don't know enough about Tree node") def getText(self, t): return t.getText() def setText(self, t, text): raise RuntimeError("don't know enough about Tree node") def getChild(self, t, i): return t.getChild(i) def setChild(self, t, i, child): t.setChild(i, child) def deleteChild(self, t, i): return t.deleteChild(i) def getChildCount(self, t): return t.getChildCount() def getUniqueID(self, node): return hash(node) def createToken(self, fromToken=None, tokenType=None, text=None): """ Tell me how to create a token for use with imaginary token nodes. For example, there is probably no input symbol associated with imaginary token DECL, but you need to create it as a payload or whatever for the DECL node as in ^(DECL type ID). If you care what the token payload objects' type is, you should override this method and any other createToken variant. """ raise NotImplementedError ############################################################################ # # common tree implementation # # Tree # \- BaseTree # \- CommonTree # \- CommonErrorNode # # TreeAdaptor # \- BaseTreeAdaptor # \- CommonTreeAdaptor # ############################################################################ class CommonTree(BaseTree): """@brief A tree node that is wrapper for a Token object. After 3.0 release while building tree rewrite stuff, it became clear that computing parent and child index is very difficult and cumbersome. Better to spend the space in every tree node. If you don't want these extra fields, it's easy to cut them out in your own BaseTree subclass. """ def __init__(self, payload): BaseTree.__init__(self) # What token indexes bracket all tokens associated with this node # and below? self.startIndex = -1 self.stopIndex = -1 # Who is the parent node of this node; if null, implies node is root self.parent = None # What index is this node in the child list? Range: 0..n-1 self.childIndex = -1 # A single token is the payload if payload is None: self.token = None elif isinstance(payload, CommonTree): self.token = payload.token self.startIndex = payload.startIndex self.stopIndex = payload.stopIndex elif payload is None or isinstance(payload, Token): self.token = payload else: raise TypeError(type(payload).__name__) def getToken(self): return self.token def dupNode(self): return CommonTree(self) def isNil(self): return self.token is None def getType(self): if self.token is None: return INVALID_TOKEN_TYPE return self.token.type type = property(getType) def getText(self): if self.token is None: return None return self.token.text text = property(getText) def getLine(self): if self.token is None or self.token.line == 0: if self.getChildCount(): return self.getChild(0).getLine() else: return 0 return self.token.line line = property(getLine) def getCharPositionInLine(self): if self.token is None or self.token.charPositionInLine == -1: if self.getChildCount(): return self.getChild(0).getCharPositionInLine() else: return 0 else: return self.token.charPositionInLine charPositionInLine = property(getCharPositionInLine) def getTokenStartIndex(self): if self.startIndex == -1 and self.token: return self.token.index return self.startIndex def setTokenStartIndex(self, index): self.startIndex = index tokenStartIndex = property(getTokenStartIndex, setTokenStartIndex) def getTokenStopIndex(self): if self.stopIndex == -1 and self.token: return self.token.index return self.stopIndex def setTokenStopIndex(self, index): self.stopIndex = index tokenStopIndex = property(getTokenStopIndex, setTokenStopIndex) def setUnknownTokenBoundaries(self): """For every node in this subtree, make sure it's start/stop token's are set. Walk depth first, visit bottom up. Only updates nodes with at least one token index < 0. """ if self.children is None: if self.startIndex < 0 or self.stopIndex < 0: self.startIndex = self.stopIndex = self.token.index return for child in self.children: child.setUnknownTokenBoundaries() if self.startIndex >= 0 and self.stopIndex >= 0: # already set return if self.children: firstChild = self.children[0] lastChild = self.children[-1] self.startIndex = firstChild.getTokenStartIndex() self.stopIndex = lastChild.getTokenStopIndex() def getChildIndex(self): #FIXME: mark as deprecated return self.childIndex def setChildIndex(self, idx): #FIXME: mark as deprecated self.childIndex = idx def getParent(self): #FIXME: mark as deprecated return self.parent def setParent(self, t): #FIXME: mark as deprecated self.parent = t def toString(self): if self.isNil(): return "nil" if self.getType() == INVALID_TOKEN_TYPE: return "<errornode>" return self.token.text __str__ = toString def toStringTree(self): if not self.children: return self.toString() ret = '' if not self.isNil(): ret += '({!s} '.format(self) ret += ' '.join([child.toStringTree() for child in self.children]) if not self.isNil(): ret += ')' return ret INVALID_NODE = CommonTree(INVALID_TOKEN) class CommonErrorNode(CommonTree): """A node representing erroneous token range in token stream""" def __init__(self, input, start, stop, exc): CommonTree.__init__(self, None) if (stop is None or (stop.index < start.index and stop.type != EOF)): # sometimes resync does not consume a token (when LT(1) is # in follow set. So, stop will be 1 to left to start. adjust. # Also handle case where start is the first token and no token # is consumed during recovery; LT(-1) will return null. stop = start self.input = input self.start = start self.stop = stop self.trappedException = exc def isNil(self): return False def getType(self): return INVALID_TOKEN_TYPE def getText(self): if isinstance(self.start, Token): i = self.start.index j = self.stop.index if self.stop.type == EOF: j = self.input.size() badText = self.input.toString(i, j) elif isinstance(self.start, Tree): badText = self.input.toString(self.start, self.stop) else: # people should subclass if they alter the tree type so this # next one is for sure correct. badText = "<unknown>" return badText def toString(self): if isinstance(self.trappedException, MissingTokenException): return ("<missing type: " + str(self.trappedException.getMissingType()) + ">") elif isinstance(self.trappedException, UnwantedTokenException): return ("<extraneous: " + str(self.trappedException.getUnexpectedToken()) + ", resync=" + self.getText() + ">") elif isinstance(self.trappedException, MismatchedTokenException): return ("<mismatched token: " + str(self.trappedException.token) + ", resync=" + self.getText() + ">") elif isinstance(self.trappedException, NoViableAltException): return ("<unexpected: " + str(self.trappedException.token) + ", resync=" + self.getText() + ">") return "<error: "+self.getText()+">" __str__ = toString class CommonTreeAdaptor(BaseTreeAdaptor): """ @brief A TreeAdaptor that works with any Tree implementation. It provides really just factory methods; all the work is done by BaseTreeAdaptor. If you would like to have different tokens created than ClassicToken objects, you need to override this and then set the parser tree adaptor to use your subclass. To get your parser to build nodes of a different type, override create(Token), errorNode(), and to be safe, YourTreeClass.dupNode(). dupNode is called to duplicate nodes during rewrite operations. """ def dupNode(self, treeNode): """ Duplicate a node. This is part of the factory; override if you want another kind of node to be built. I could use reflection to prevent having to override this but reflection is slow. """ if treeNode is None: return None return treeNode.dupNode() def createWithPayload(self, payload): return CommonTree(payload) def createToken(self, fromToken=None, tokenType=None, text=None): """ Tell me how to create a token for use with imaginary token nodes. For example, there is probably no input symbol associated with imaginary token DECL, but you need to create it as a payload or whatever for the DECL node as in ^(DECL type ID). If you care what the token payload objects' type is, you should override this method and any other createToken variant. """ if fromToken is not None: return CommonToken(oldToken=fromToken) return CommonToken(type=tokenType, text=text) def setTokenBoundaries(self, t, startToken, stopToken): """ Track start/stop token for subtree root created for a rule. Only works with Tree nodes. For rules that match nothing, seems like this will yield start=i and stop=i-1 in a nil node. Might be useful info so I'll not force to be i..i. """ if t is None: return start = 0 stop = 0 if startToken is not None: start = startToken.index if stopToken is not None: stop = stopToken.index t.setTokenStartIndex(start) t.setTokenStopIndex(stop) def getTokenStartIndex(self, t): if t is None: return -1 return t.getTokenStartIndex() def getTokenStopIndex(self, t): if t is None: return -1 return t.getTokenStopIndex() def getText(self, t): if t is None: return None return t.text def getType(self, t): if t is None: return INVALID_TOKEN_TYPE return t.type def getToken(self, t): """ What is the Token associated with this node? If you are not using CommonTree, then you must override this in your own adaptor. """ if isinstance(t, CommonTree): return t.getToken() return None # no idea what to do def getChild(self, t, i): if t is None: return None return t.getChild(i) def getChildCount(self, t): if t is None: return 0 return t.getChildCount() def getParent(self, t): return t.getParent() def setParent(self, t, parent): t.setParent(parent) def getChildIndex(self, t): if t is None: return 0 return t.getChildIndex() def setChildIndex(self, t, index): t.setChildIndex(index) def replaceChildren(self, parent, startChildIndex, stopChildIndex, t): if parent is not None: parent.replaceChildren(startChildIndex, stopChildIndex, t) ############################################################################ # # streams # # TreeNodeStream # \- BaseTree # \- CommonTree # # TreeAdaptor # \- BaseTreeAdaptor # \- CommonTreeAdaptor # ############################################################################ class TreeNodeStream(IntStream): """@brief A stream of tree nodes It accessing nodes from a tree of some kind. """ # TreeNodeStream is abstract, no need to complain about not implemented # abstract methods # pylint: disable-msg=W0223 def get(self, i): """Get a tree node at an absolute index i; 0..n-1. If you don't want to buffer up nodes, then this method makes no sense for you. """ raise NotImplementedError def LT(self, k): """ Get tree node at current input pointer + i ahead where i=1 is next node. i<0 indicates nodes in the past. So LT(-1) is previous node, but implementations are not required to provide results for k < -1. LT(0) is undefined. For i>=n, return null. Return null for LT(0) and any index that results in an absolute address that is negative. This is analogus to the LT() method of the TokenStream, but this returns a tree node instead of a token. Makes code gen identical for both parser and tree grammars. :) """ raise NotImplementedError def getTreeSource(self): """ Where is this stream pulling nodes from? This is not the name, but the object that provides node objects. """ raise NotImplementedError def getTokenStream(self): """ If the tree associated with this stream was created from a TokenStream, you can specify it here. Used to do rule $text attribute in tree parser. Optional unless you use tree parser rule text attribute or output=template and rewrite=true options. """ raise NotImplementedError def getTreeAdaptor(self): """ What adaptor can tell me how to interpret/navigate nodes and trees. E.g., get text of a node. """ raise NotImplementedError def setUniqueNavigationNodes(self, uniqueNavigationNodes): """ As we flatten the tree, we use UP, DOWN nodes to represent the tree structure. When debugging we need unique nodes so we have to instantiate new ones. When doing normal tree parsing, it's slow and a waste of memory to create unique navigation nodes. Default should be false; """ raise NotImplementedError def reset(self): """ Reset the tree node stream in such a way that it acts like a freshly constructed stream. """ raise NotImplementedError def toString(self, start, stop): """ Return the text of all nodes from start to stop, inclusive. If the stream does not buffer all the nodes then it can still walk recursively from start until stop. You can always return null or "" too, but users should not access $ruleLabel.text in an action of course in that case. """ raise NotImplementedError # REWRITING TREES (used by tree parser) def replaceChildren(self, parent, startChildIndex, stopChildIndex, t): """ Replace from start to stop child index of parent with t, which might be a list. Number of children may be different after this call. The stream is notified because it is walking the tree and might need to know you are monkeying with the underlying tree. Also, it might be able to modify the node stream to avoid restreaming for future phases. If parent is null, don't do anything; must be at root of overall tree. Can't replace whatever points to the parent externally. Do nothing. """ raise NotImplementedError class CommonTreeNodeStream(TreeNodeStream): """@brief A buffered stream of tree nodes. Nodes can be from a tree of ANY kind. This node stream sucks all nodes out of the tree specified in the constructor during construction and makes pointers into the tree using an array of Object pointers. The stream necessarily includes pointers to DOWN and UP and EOF nodes. This stream knows how to mark/release for backtracking. This stream is most suitable for tree interpreters that need to jump around a lot or for tree parsers requiring speed (at cost of memory). There is some duplicated functionality here with UnBufferedTreeNodeStream but just in bookkeeping, not tree walking etc... @see UnBufferedTreeNodeStream """ def __init__(self, *args): TreeNodeStream.__init__(self) if len(args) == 1: adaptor = CommonTreeAdaptor() tree = args[0] nodes = None down = None up = None eof = None elif len(args) == 2: adaptor = args[0] tree = args[1] nodes = None down = None up = None eof = None elif len(args) == 3: parent = args[0] start = args[1] stop = args[2] adaptor = parent.adaptor tree = parent.root nodes = parent.nodes[start:stop] down = parent.down up = parent.up eof = parent.eof else: raise TypeError("Invalid arguments") # all these navigation nodes are shared and hence they # cannot contain any line/column info if down is not None: self.down = down else: self.down = adaptor.createFromType(DOWN, "DOWN") if up is not None: self.up = up else: self.up = adaptor.createFromType(UP, "UP") if eof is not None: self.eof = eof else: self.eof = adaptor.createFromType(EOF, "EOF") # The complete mapping from stream index to tree node. # This buffer includes pointers to DOWN, UP, and EOF nodes. # It is built upon ctor invocation. The elements are type # Object as we don't what the trees look like. # Load upon first need of the buffer so we can set token types # of interest for reverseIndexing. Slows us down a wee bit to # do all of the if p==-1 testing everywhere though. if nodes is not None: self.nodes = nodes else: self.nodes = [] # Pull nodes from which tree? self.root = tree # IF this tree (root) was created from a token stream, track it. self.tokens = None # What tree adaptor was used to build these trees self.adaptor = adaptor # Reuse same DOWN, UP navigation nodes unless this is true self.uniqueNavigationNodes = False # The index into the nodes list of the current node (next node # to consume). If -1, nodes array not filled yet. self.p = -1 # Track the last mark() call result value for use in rewind(). self.lastMarker = None # Stack of indexes used for push/pop calls self.calls = [] def fillBuffer(self): """Walk tree with depth-first-search and fill nodes buffer. Don't do DOWN, UP nodes if its a list (t is isNil). """ self._fillBuffer(self.root) self.p = 0 # buffer of nodes intialized now def _fillBuffer(self, t): nil = self.adaptor.isNil(t) if not nil: self.nodes.append(t) # add this node # add DOWN node if t has children n = self.adaptor.getChildCount(t) if not nil and n > 0: self.addNavigationNode(DOWN) # and now add all its children for c in range(n): self._fillBuffer(self.adaptor.getChild(t, c)) # add UP node if t has children if not nil and n > 0: self.addNavigationNode(UP) def getNodeIndex(self, node): """What is the stream index for node? 0..n-1 Return -1 if node not found. """ if self.p == -1: self.fillBuffer() for i, t in enumerate(self.nodes): if t == node: return i return -1 def addNavigationNode(self, ttype): """ As we flatten the tree, we use UP, DOWN nodes to represent the tree structure. When debugging we need unique nodes so instantiate new ones when uniqueNavigationNodes is true. """ navNode = None if ttype == DOWN: if self.hasUniqueNavigationNodes(): navNode = self.adaptor.createFromType(DOWN, "DOWN") else: navNode = self.down else: if self.hasUniqueNavigationNodes(): navNode = self.adaptor.createFromType(UP, "UP") else: navNode = self.up self.nodes.append(navNode) def get(self, i): if self.p == -1: self.fillBuffer() return self.nodes[i] def LT(self, k): if self.p == -1: self.fillBuffer() if k == 0: return None if k < 0: return self.LB(-k) if self.p + k - 1 >= len(self.nodes): return self.eof return self.nodes[self.p + k - 1] def getCurrentSymbol(self): return self.LT(1) def LB(self, k): """Look backwards k nodes""" if k == 0: return None if self.p - k < 0: return None return self.nodes[self.p - k] def isEOF(self, obj): return self.adaptor.getType(obj) == EOF def getTreeSource(self): return self.root def getSourceName(self): return self.getTokenStream().getSourceName() def getTokenStream(self): return self.tokens def setTokenStream(self, tokens): self.tokens = tokens def getTreeAdaptor(self): return self.adaptor def hasUniqueNavigationNodes(self): return self.uniqueNavigationNodes def setUniqueNavigationNodes(self, uniqueNavigationNodes): self.uniqueNavigationNodes = uniqueNavigationNodes def consume(self): if self.p == -1: self.fillBuffer() self.p += 1 def LA(self, i): return self.adaptor.getType(self.LT(i)) def mark(self): if self.p == -1: self.fillBuffer() self.lastMarker = self.index() return self.lastMarker def release(self, marker=None): # no resources to release pass def index(self): return self.p def rewind(self, marker=None): if marker is None: marker = self.lastMarker self.seek(marker) def seek(self, index): if self.p == -1: self.fillBuffer() self.p = index def push(self, index): """ Make stream jump to a new location, saving old location. Switch back with pop(). """ self.calls.append(self.p) # save current index self.seek(index) def pop(self): """ Seek back to previous index saved during last push() call. Return top of stack (return index). """ ret = self.calls.pop(-1) self.seek(ret) return ret def reset(self): self.p = 0 self.lastMarker = 0 self.calls = [] def size(self): if self.p == -1: self.fillBuffer() return len(self.nodes) # TREE REWRITE INTERFACE def replaceChildren(self, parent, startChildIndex, stopChildIndex, t): if parent is not None: self.adaptor.replaceChildren( parent, startChildIndex, stopChildIndex, t ) def __str__(self): """Used for testing, just return the token type stream""" if self.p == -1: self.fillBuffer() return ' '.join([str(self.adaptor.getType(node)) for node in self.nodes ]) def toString(self, start, stop): if start is None or stop is None: return None if self.p == -1: self.fillBuffer() #System.out.println("stop: "+stop); #if ( start instanceof CommonTree ) # System.out.print("toString: "+((CommonTree)start).getToken()+", "); #else # System.out.println(start); #if ( stop instanceof CommonTree ) # System.out.println(((CommonTree)stop).getToken()); #else # System.out.println(stop); # if we have the token stream, use that to dump text in order if self.tokens is not None: beginTokenIndex = self.adaptor.getTokenStartIndex(start) endTokenIndex = self.adaptor.getTokenStopIndex(stop) # if it's a tree, use start/stop index from start node # else use token range from start/stop nodes if self.adaptor.getType(stop) == UP: endTokenIndex = self.adaptor.getTokenStopIndex(start) elif self.adaptor.getType(stop) == EOF: endTokenIndex = self.size() -2 # don't use EOF return self.tokens.toString(beginTokenIndex, endTokenIndex) # walk nodes looking for start i, t = 0, None for i, t in enumerate(self.nodes): if t == start: break # now walk until we see stop, filling string buffer with text buf = [] t = self.nodes[i] while t != stop: text = self.adaptor.getText(t) if text is None: text = " " + self.adaptor.getType(t) buf.append(text) i += 1 t = self.nodes[i] # include stop node too text = self.adaptor.getText(stop) if text is None: text = " " +self.adaptor.getType(stop) buf.append(text) return ''.join(buf) ## iterator interface def __iter__(self): if self.p == -1: self.fillBuffer() for node in self.nodes: yield node ############################################################################# # # tree parser # ############################################################################# class TreeParser(BaseRecognizer): """@brief Baseclass for generated tree parsers. A parser for a stream of tree nodes. "tree grammars" result in a subclass of this. All the error reporting and recovery is shared with Parser via the BaseRecognizer superclass. """ def __init__(self, input, state=None): BaseRecognizer.__init__(self, state) self.input = None self.setTreeNodeStream(input) def reset(self): BaseRecognizer.reset(self) # reset all recognizer state variables if self.input is not None: self.input.seek(0) # rewind the input def setTreeNodeStream(self, input): """Set the input stream""" self.input = input def getTreeNodeStream(self): return self.input def getSourceName(self): return self.input.getSourceName() def getCurrentInputSymbol(self, input): return input.LT(1) def getMissingSymbol(self, input, e, expectedTokenType, follow): tokenText = "<missing " + self.tokenNames[expectedTokenType] + ">" adaptor = input.adaptor return adaptor.createToken( CommonToken(type=expectedTokenType, text=tokenText)) # precompiled regex used by inContext dotdot = ".*[^.]\\.\\.[^.].*" doubleEtc = ".*\\.\\.\\.\\s+\\.\\.\\..*" dotdotPattern = re.compile(dotdot) doubleEtcPattern = re.compile(doubleEtc) def inContext(self, context, adaptor=None, tokenName=None, t=None): """Check if current node in input has a context. Context means sequence of nodes towards root of tree. For example, you might say context is "MULT" which means my parent must be MULT. "CLASS VARDEF" says current node must be child of a VARDEF and whose parent is a CLASS node. You can use "..." to mean zero-or-more nodes. "METHOD ... VARDEF" means my parent is VARDEF and somewhere above that is a METHOD node. The first node in the context is not necessarily the root. The context matcher stops matching and returns true when it runs out of context. There is no way to force the first node to be the root. """ return self._inContext( self.input.getTreeAdaptor(), self.tokenNames, self.input.LT(1), context) @classmethod def _inContext(cls, adaptor, tokenNames, t, context): """The worker for inContext. It's static and full of parameters for testing purposes. """ if cls.dotdotPattern.match(context): # don't allow "..", must be "..." raise ValueError("invalid syntax: ..") if cls.doubleEtcPattern.match(context): # don't allow double "..." raise ValueError("invalid syntax: ... ...") # ensure spaces around ... context = context.replace("...", " ... ") context = context.strip() nodes = context.split() ni = len(nodes) - 1 t = adaptor.getParent(t) while ni >= 0 and t is not None: if nodes[ni] == "...": # walk upwards until we see nodes[ni-1] then continue walking if ni == 0: # ... at start is no-op return True goal = nodes[ni-1] ancestor = cls._getAncestor(adaptor, tokenNames, t, goal) if ancestor is None: return False t = ancestor ni -= 1 name = tokenNames[adaptor.getType(t)] if name != nodes[ni]: return False # advance to parent and to previous element in context node list ni -= 1 t = adaptor.getParent(t) # at root but more nodes to match if t is None and ni >= 0: return False return True @staticmethod def _getAncestor(adaptor, tokenNames, t, goal): """Helper for static inContext.""" while t is not None: name = tokenNames[adaptor.getType(t)] if name == goal: return t t = adaptor.getParent(t) return None def matchAny(self): """ Match '.' in tree parser has special meaning. Skip node or entire tree if node has children. If children, scan until corresponding UP node. """ self._state.errorRecovery = False look = self.input.LT(1) if self.input.getTreeAdaptor().getChildCount(look) == 0: self.input.consume() # not subtree, consume 1 node and return return # current node is a subtree, skip to corresponding UP. # must count nesting level to get right UP level = 0 tokenType = self.input.getTreeAdaptor().getType(look) while tokenType != EOF and not (tokenType == UP and level==0): self.input.consume() look = self.input.LT(1) tokenType = self.input.getTreeAdaptor().getType(look) if tokenType == DOWN: level += 1 elif tokenType == UP: level -= 1 self.input.consume() # consume UP def mismatch(self, input, ttype, follow): """ We have DOWN/UP nodes in the stream that have no line info; override. plus we want to alter the exception type. Don't try to recover from tree parser errors inline... """ raise MismatchedTreeNodeException(ttype, input) def getErrorHeader(self, e): """ Prefix error message with the grammar name because message is always intended for the programmer because the parser built the input tree not the user. """ return (self.getGrammarFileName() + ": node from {}line {}:{}".format( "after " if e.approximateLineInfo else '', e.line, e.charPositionInLine)) def getErrorMessage(self, e): """ Tree parsers parse nodes they usually have a token object as payload. Set the exception token and do the default behavior. """ if isinstance(self, TreeParser): adaptor = e.input.getTreeAdaptor() e.token = adaptor.getToken(e.node) if e.token is not None: # could be an UP/DOWN node e.token = CommonToken( type=adaptor.getType(e.node), text=adaptor.getText(e.node) ) return BaseRecognizer.getErrorMessage(self, e) def traceIn(self, ruleName, ruleIndex): BaseRecognizer.traceIn(self, ruleName, ruleIndex, self.input.LT(1)) def traceOut(self, ruleName, ruleIndex): BaseRecognizer.traceOut(self, ruleName, ruleIndex, self.input.LT(1)) ############################################################################# # # tree visitor # ############################################################################# class TreeVisitor(object): """Do a depth first walk of a tree, applying pre() and post() actions we go. """ def __init__(self, adaptor=None): if adaptor is not None: self.adaptor = adaptor else: self.adaptor = CommonTreeAdaptor() def visit(self, t, pre_action=None, post_action=None): """Visit every node in tree t and trigger an action for each node before/after having visited all of its children. Bottom up walk. Execute both actions even if t has no children. Ignore return results from transforming children since they will have altered the child list of this node (their parent). Return result of applying post action to this node. The Python version differs from the Java version by taking two callables 'pre_action' and 'post_action' instead of a class instance that wraps those methods. Those callables must accept a TreeNode as their single argument and return the (potentially transformed or replaced) TreeNode. """ isNil = self.adaptor.isNil(t) if pre_action is not None and not isNil: # if rewritten, walk children of new t t = pre_action(t) idx = 0 while idx < self.adaptor.getChildCount(t): child = self.adaptor.getChild(t, idx) self.visit(child, pre_action, post_action) idx += 1 if post_action is not None and not isNil: t = post_action(t) return t ############################################################################# # # tree iterator # ############################################################################# class TreeIterator(object): """ Return a node stream from a doubly-linked tree whose nodes know what child index they are. Emit navigation nodes (DOWN, UP, and EOF) to let show tree structure. """ def __init__(self, tree, adaptor=None): if adaptor is None: adaptor = CommonTreeAdaptor() self.root = tree self.adaptor = adaptor self.first_time = True self.tree = tree # If we emit UP/DOWN nodes, we need to spit out multiple nodes per # next() call. self.nodes = [] # navigation nodes to return during walk and at end self.down = adaptor.createFromType(DOWN, "DOWN") self.up = adaptor.createFromType(UP, "UP") self.eof = adaptor.createFromType(EOF, "EOF") def reset(self): self.first_time = True self.tree = self.root self.nodes = [] def __iter__(self): return self def has_next(self): if self.first_time: return self.root is not None if len(self.nodes) > 0: return True if self.tree is None: return False if self.adaptor.getChildCount(self.tree) > 0: return True # back at root? return self.adaptor.getParent(self.tree) is not None def __next__(self): if not self.has_next(): raise StopIteration if self.first_time: # initial condition self.first_time = False if self.adaptor.getChildCount(self.tree) == 0: # single node tree (special) self.nodes.append(self.eof) return self.tree return self.tree # if any queued up, use those first if len(self.nodes) > 0: return self.nodes.pop(0) # no nodes left? if self.tree is None: return self.eof # next node will be child 0 if any children if self.adaptor.getChildCount(self.tree) > 0: self.tree = self.adaptor.getChild(self.tree, 0) # real node is next after DOWN self.nodes.append(self.tree) return self.down # if no children, look for next sibling of tree or ancestor parent = self.adaptor.getParent(self.tree) # while we're out of siblings, keep popping back up towards root while (parent is not None and self.adaptor.getChildIndex(self.tree)+1 >= self.adaptor.getChildCount(parent)): # we're moving back up self.nodes.append(self.up) self.tree = parent parent = self.adaptor.getParent(self.tree) # no nodes left? if parent is None: self.tree = None # back at root? nothing left then self.nodes.append(self.eof) # add to queue, might have UP nodes in there return self.nodes.pop(0) # must have found a node with an unvisited sibling # move to it and return it nextSiblingIndex = self.adaptor.getChildIndex(self.tree) + 1 self.tree = self.adaptor.getChild(parent, nextSiblingIndex) self.nodes.append(self.tree) # add to queue, might have UP nodes in there return self.nodes.pop(0) ############################################################################# # # streams for rule rewriting # ############################################################################# class RewriteRuleElementStream(object): """@brief Internal helper class. A generic list of elements tracked in an alternative to be used in a -> rewrite rule. We need to subclass to fill in the next() method, which returns either an AST node wrapped around a token payload or an existing subtree. Once you start next()ing, do not try to add more elements. It will break the cursor tracking I believe. @see org.antlr.runtime.tree.RewriteRuleSubtreeStream @see org.antlr.runtime.tree.RewriteRuleTokenStream TODO: add mechanism to detect/puke on modification after reading from stream """ def __init__(self, adaptor, elementDescription, elements=None): # Cursor 0..n-1. If singleElement!=null, cursor is 0 until you next(), # which bumps it to 1 meaning no more elements. self.cursor = 0 # Track single elements w/o creating a list. Upon 2nd add, alloc list self.singleElement = None # The list of tokens or subtrees we are tracking self.elements = None # Once a node / subtree has been used in a stream, it must be dup'd # from then on. Streams are reset after subrules so that the streams # can be reused in future subrules. So, reset must set a dirty bit. # If dirty, then next() always returns a dup. self.dirty = False # The element or stream description; usually has name of the token or # rule reference that this list tracks. Can include rulename too, but # the exception would track that info. self.elementDescription = elementDescription self.adaptor = adaptor if isinstance(elements, (list, tuple)): # Create a stream, but feed off an existing list self.singleElement = None self.elements = elements else: # Create a stream with one element self.add(elements) def reset(self): """ Reset the condition of this stream so that it appears we have not consumed any of its elements. Elements themselves are untouched. Once we reset the stream, any future use will need duplicates. Set the dirty bit. """ self.cursor = 0 self.dirty = True def add(self, el): if el is None: return if self.elements is not None: # if in list, just add self.elements.append(el) return if self.singleElement is None: # no elements yet, track w/o list self.singleElement = el return # adding 2nd element, move to list self.elements = [] self.elements.append(self.singleElement) self.singleElement = None self.elements.append(el) def nextTree(self): """ Return the next element in the stream. If out of elements, throw an exception unless size()==1. If size is 1, then return elements[0]. Return a duplicate node/subtree if stream is out of elements and size==1. If we've already used the element, dup (dirty bit set). """ if (self.dirty or (self.cursor >= len(self) and len(self) == 1) ): # if out of elements and size is 1, dup el = self._next() return self.dup(el) # test size above then fetch el = self._next() return el def _next(self): """ do the work of getting the next element, making sure that it's a tree node or subtree. Deal with the optimization of single- element list versus list of size > 1. Throw an exception if the stream is empty or we're out of elements and size>1. protected so you can override in a subclass if necessary. """ if len(self) == 0: raise RewriteEmptyStreamException(self.elementDescription) if self.cursor >= len(self): # out of elements? if len(self) == 1: # if size is 1, it's ok; return and we'll dup return self.toTree(self.singleElement) # out of elements and size was not 1, so we can't dup raise RewriteCardinalityException(self.elementDescription) # we have elements if self.singleElement is not None: self.cursor += 1 # move cursor even for single element list return self.toTree(self.singleElement) # must have more than one in list, pull from elements o = self.toTree(self.elements[self.cursor]) self.cursor += 1 return o def dup(self, el): """ When constructing trees, sometimes we need to dup a token or AST subtree. Dup'ing a token means just creating another AST node around it. For trees, you must call the adaptor.dupTree() unless the element is for a tree root; then it must be a node dup. """ raise NotImplementedError def toTree(self, el): """ Ensure stream emits trees; tokens must be converted to AST nodes. AST nodes can be passed through unmolested. """ return el def hasNext(self): return ( (self.singleElement is not None and self.cursor < 1) or (self.elements is not None and self.cursor < len(self.elements) ) ) def size(self): if self.singleElement is not None: return 1 if self.elements is not None: return len(self.elements) return 0 __len__ = size def getDescription(self): """Deprecated. Directly access elementDescription attribute""" return self.elementDescription class RewriteRuleTokenStream(RewriteRuleElementStream): """@brief Internal helper class.""" def toTree(self, el): # Don't convert to a tree unless they explicitly call nextTree. # This way we can do hetero tree nodes in rewrite. return el def nextNode(self): t = self._next() return self.adaptor.createWithPayload(t) def nextToken(self): return self._next() def dup(self, el): raise TypeError("dup can't be called for a token stream.") class RewriteRuleSubtreeStream(RewriteRuleElementStream): """@brief Internal helper class.""" def nextNode(self): """ Treat next element as a single node even if it's a subtree. This is used instead of next() when the result has to be a tree root node. Also prevents us from duplicating recently-added children; e.g., ^(type ID)+ adds ID to type and then 2nd iteration must dup the type node, but ID has been added. Referencing a rule result twice is ok; dup entire tree as we can't be adding trees as root; e.g., expr expr. Hideous code duplication here with super.next(). Can't think of a proper way to refactor. This needs to always call dup node and super.next() doesn't know which to call: dup node or dup tree. """ if (self.dirty or (self.cursor >= len(self) and len(self) == 1) ): # if out of elements and size is 1, dup (at most a single node # since this is for making root nodes). el = self._next() return self.adaptor.dupNode(el) # test size above then fetch el = self._next() while self.adaptor.isNil(el) and self.adaptor.getChildCount(el) == 1: el = self.adaptor.getChild(el, 0) # dup just the root (want node here) return self.adaptor.dupNode(el) def dup(self, el): return self.adaptor.dupTree(el) class RewriteRuleNodeStream(RewriteRuleElementStream): """ Queues up nodes matched on left side of -> in a tree parser. This is the analog of RewriteRuleTokenStream for normal parsers. """ def nextNode(self): return self._next() def toTree(self, el): return self.adaptor.dupNode(el) def dup(self, el): # we dup every node, so don't have to worry about calling dup; short- #circuited next() so it doesn't call. raise TypeError("dup can't be called for a node stream.") class TreeRuleReturnScope(RuleReturnScope): """ This is identical to the ParserRuleReturnScope except that the start property is a tree nodes not Token object when you are parsing trees. To be generic the tree node types have to be Object. """ def __init__(self): super().__init__() self.start = None self.tree = None def getStart(self): return self.start def getTree(self): return self.tree