/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % EEEEE FFFFF FFFFF EEEEE CCCC TTTTT % % E F F E C T % % EEE FFF FFF EEE C T % % E F F E C T % % EEEEE F F EEEEE CCCC T % % % % % % MagickCore Image Effects Methods % % % % Software Design % % Cristy % % October 1996 % % % % % % Copyright 1999-2019 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % https://imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/accelerate-private.h" #include "MagickCore/blob.h" #include "MagickCore/cache-view.h" #include "MagickCore/color.h" #include "MagickCore/color-private.h" #include "MagickCore/colorspace.h" #include "MagickCore/constitute.h" #include "MagickCore/decorate.h" #include "MagickCore/distort.h" #include "MagickCore/draw.h" #include "MagickCore/enhance.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/effect.h" #include "MagickCore/fx.h" #include "MagickCore/gem.h" #include "MagickCore/gem-private.h" #include "MagickCore/geometry.h" #include "MagickCore/image-private.h" #include "MagickCore/list.h" #include "MagickCore/log.h" #include "MagickCore/matrix.h" #include "MagickCore/memory_.h" #include "MagickCore/memory-private.h" #include "MagickCore/monitor.h" #include "MagickCore/monitor-private.h" #include "MagickCore/montage.h" #include "MagickCore/morphology.h" #include "MagickCore/morphology-private.h" #include "MagickCore/paint.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/pixel-private.h" #include "MagickCore/property.h" #include "MagickCore/quantize.h" #include "MagickCore/quantum.h" #include "MagickCore/quantum-private.h" #include "MagickCore/random_.h" #include "MagickCore/random-private.h" #include "MagickCore/resample.h" #include "MagickCore/resample-private.h" #include "MagickCore/resize.h" #include "MagickCore/resource_.h" #include "MagickCore/segment.h" #include "MagickCore/shear.h" #include "MagickCore/signature-private.h" #include "MagickCore/statistic.h" #include "MagickCore/string_.h" #include "MagickCore/thread-private.h" #include "MagickCore/transform.h" #include "MagickCore/threshold.h" /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A d a p t i v e B l u r I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AdaptiveBlurImage() adaptively blurs the image by blurring less % intensely near image edges and more intensely far from edges. We blur the % image with a Gaussian operator of the given radius and standard deviation % (sigma). For reasonable results, radius should be larger than sigma. Use a % radius of 0 and AdaptiveBlurImage() selects a suitable radius for you. % % The format of the AdaptiveBlurImage method is: % % Image *AdaptiveBlurImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Laplacian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *AdaptiveBlurImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { #define AdaptiveBlurImageTag "Convolve/Image" #define MagickSigma (fabs(sigma) < MagickEpsilon ? MagickEpsilon : sigma) CacheView *blur_view, *edge_view, *image_view; double normalize, **kernel; Image *blur_image, *edge_image, *gaussian_image; MagickBooleanType status; MagickOffsetType progress; register ssize_t i; size_t width; ssize_t j, k, u, v, y; assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); blur_image=CloneImage(image,0,0,MagickTrue,exception); if (blur_image == (Image *) NULL) return((Image *) NULL); if (fabs(sigma) < MagickEpsilon) return(blur_image); if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse) { blur_image=DestroyImage(blur_image); return((Image *) NULL); } /* Edge detect the image brightness channel, level, blur, and level again. */ edge_image=EdgeImage(image,radius,exception); if (edge_image == (Image *) NULL) { blur_image=DestroyImage(blur_image); return((Image *) NULL); } (void) AutoLevelImage(edge_image,exception); gaussian_image=BlurImage(edge_image,radius,sigma,exception); if (gaussian_image != (Image *) NULL) { edge_image=DestroyImage(edge_image); edge_image=gaussian_image; } (void) AutoLevelImage(edge_image,exception); /* Create a set of kernels from maximum (radius,sigma) to minimum. */ width=GetOptimalKernelWidth2D(radius,sigma); kernel=(double **) MagickAssumeAligned(AcquireAlignedMemory((size_t) width, sizeof(*kernel))); if (kernel == (double **) NULL) { edge_image=DestroyImage(edge_image); blur_image=DestroyImage(blur_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } (void) memset(kernel,0,(size_t) width*sizeof(*kernel)); for (i=0; i < (ssize_t) width; i+=2) { kernel[i]=(double *) MagickAssumeAligned(AcquireAlignedMemory( (size_t) (width-i),(width-i)*sizeof(**kernel))); if (kernel[i] == (double *) NULL) break; normalize=0.0; j=(ssize_t) (width-i-1)/2; k=0; for (v=(-j); v <= j; v++) { for (u=(-j); u <= j; u++) { kernel[i][k]=(double) (exp(-((double) u*u+v*v)/(2.0*MagickSigma* MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma)); normalize+=kernel[i][k]; k++; } } kernel[i][(k-1)/2]+=(double) (1.0-normalize); if (sigma < MagickEpsilon) kernel[i][(k-1)/2]=1.0; } if (i < (ssize_t) width) { for (i-=2; i >= 0; i-=2) kernel[i]=(double *) RelinquishAlignedMemory(kernel[i]); kernel=(double **) RelinquishAlignedMemory(kernel); edge_image=DestroyImage(edge_image); blur_image=DestroyImage(blur_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } /* Adaptively blur image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); edge_view=AcquireVirtualCacheView(edge_image,exception); blur_view=AcquireAuthenticCacheView(blur_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(image,blur_image,blur_image->rows,1) #endif for (y=0; y < (ssize_t) blur_image->rows; y++) { register const Quantum *magick_restrict r; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; r=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1,exception); q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1, exception); if ((r == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) blur_image->columns; x++) { register const Quantum *magick_restrict p; register ssize_t i; ssize_t center, j; j=(ssize_t) ceil((double) width*(1.0-QuantumScale* GetPixelIntensity(edge_image,r))-0.5); if (j < 0) j=0; else if (j > (ssize_t) width) j=(ssize_t) width; if ((j & 0x01) != 0) j--; p=GetCacheViewVirtualPixels(image_view,x-((ssize_t) (width-j)/2L),y- (ssize_t) ((width-j)/2L),width-j,width-j,exception); if (p == (const Quantum *) NULL) break; center=(ssize_t) GetPixelChannels(image)*(width-j)*((width-j)/2L)+ GetPixelChannels(image)*((width-j)/2); for (i=0; i < (ssize_t) GetPixelChannels(blur_image); i++) { double alpha, gamma, pixel; PixelChannel channel; PixelTrait blur_traits, traits; register const double *magick_restrict k; register const Quantum *magick_restrict pixels; register ssize_t u; ssize_t v; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); blur_traits=GetPixelChannelTraits(blur_image,channel); if ((traits == UndefinedPixelTrait) || (blur_traits == UndefinedPixelTrait)) continue; if ((blur_traits & CopyPixelTrait) != 0) { SetPixelChannel(blur_image,channel,p[center+i],q); continue; } k=kernel[j]; pixels=p; pixel=0.0; gamma=0.0; if ((blur_traits & BlendPixelTrait) == 0) { /* No alpha blending. */ for (v=0; v < (ssize_t) (width-j); v++) { for (u=0; u < (ssize_t) (width-j); u++) { pixel+=(*k)*pixels[i]; gamma+=(*k); k++; pixels+=GetPixelChannels(image); } } gamma=PerceptibleReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); continue; } /* Alpha blending. */ for (v=0; v < (ssize_t) (width-j); v++) { for (u=0; u < (ssize_t) (width-j); u++) { alpha=(double) (QuantumScale*GetPixelAlpha(image,pixels)); pixel+=(*k)*alpha*pixels[i]; gamma+=(*k)*alpha; k++; pixels+=GetPixelChannels(image); } } gamma=PerceptibleReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); } q+=GetPixelChannels(blur_image); r+=GetPixelChannels(edge_image); } if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(image,AdaptiveBlurImageTag,progress, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } blur_image->type=image->type; blur_view=DestroyCacheView(blur_view); edge_view=DestroyCacheView(edge_view); image_view=DestroyCacheView(image_view); edge_image=DestroyImage(edge_image); for (i=0; i < (ssize_t) width; i+=2) kernel[i]=(double *) RelinquishAlignedMemory(kernel[i]); kernel=(double **) RelinquishAlignedMemory(kernel); if (status == MagickFalse) blur_image=DestroyImage(blur_image); return(blur_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A d a p t i v e S h a r p e n I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AdaptiveSharpenImage() adaptively sharpens the image by sharpening more % intensely near image edges and less intensely far from edges. We sharpen the % image with a Gaussian operator of the given radius and standard deviation % (sigma). For reasonable results, radius should be larger than sigma. Use a % radius of 0 and AdaptiveSharpenImage() selects a suitable radius for you. % % The format of the AdaptiveSharpenImage method is: % % Image *AdaptiveSharpenImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Laplacian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *AdaptiveSharpenImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { #define AdaptiveSharpenImageTag "Convolve/Image" #define MagickSigma (fabs(sigma) < MagickEpsilon ? MagickEpsilon : sigma) CacheView *sharp_view, *edge_view, *image_view; double normalize, **kernel; Image *sharp_image, *edge_image, *gaussian_image; MagickBooleanType status; MagickOffsetType progress; register ssize_t i; size_t width; ssize_t j, k, u, v, y; assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); sharp_image=CloneImage(image,0,0,MagickTrue,exception); if (sharp_image == (Image *) NULL) return((Image *) NULL); if (fabs(sigma) < MagickEpsilon) return(sharp_image); if (SetImageStorageClass(sharp_image,DirectClass,exception) == MagickFalse) { sharp_image=DestroyImage(sharp_image); return((Image *) NULL); } /* Edge detect the image brightness channel, level, sharp, and level again. */ edge_image=EdgeImage(image,radius,exception); if (edge_image == (Image *) NULL) { sharp_image=DestroyImage(sharp_image); return((Image *) NULL); } (void) AutoLevelImage(edge_image,exception); gaussian_image=BlurImage(edge_image,radius,sigma,exception); if (gaussian_image != (Image *) NULL) { edge_image=DestroyImage(edge_image); edge_image=gaussian_image; } (void) AutoLevelImage(edge_image,exception); /* Create a set of kernels from maximum (radius,sigma) to minimum. */ width=GetOptimalKernelWidth2D(radius,sigma); kernel=(double **) MagickAssumeAligned(AcquireAlignedMemory((size_t) width,sizeof(*kernel))); if (kernel == (double **) NULL) { edge_image=DestroyImage(edge_image); sharp_image=DestroyImage(sharp_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } (void) memset(kernel,0,(size_t) width*sizeof(*kernel)); for (i=0; i < (ssize_t) width; i+=2) { kernel[i]=(double *) MagickAssumeAligned(AcquireAlignedMemory((size_t) (width-i),(width-i)*sizeof(**kernel))); if (kernel[i] == (double *) NULL) break; normalize=0.0; j=(ssize_t) (width-i-1)/2; k=0; for (v=(-j); v <= j; v++) { for (u=(-j); u <= j; u++) { kernel[i][k]=(double) (-exp(-((double) u*u+v*v)/(2.0*MagickSigma* MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma)); normalize+=kernel[i][k]; k++; } } kernel[i][(k-1)/2]=(double) ((-2.0)*normalize); if (sigma < MagickEpsilon) kernel[i][(k-1)/2]=1.0; } if (i < (ssize_t) width) { for (i-=2; i >= 0; i-=2) kernel[i]=(double *) RelinquishAlignedMemory(kernel[i]); kernel=(double **) RelinquishAlignedMemory(kernel); edge_image=DestroyImage(edge_image); sharp_image=DestroyImage(sharp_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } /* Adaptively sharpen image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); edge_view=AcquireVirtualCacheView(edge_image,exception); sharp_view=AcquireAuthenticCacheView(sharp_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(image,sharp_image,sharp_image->rows,1) #endif for (y=0; y < (ssize_t) sharp_image->rows; y++) { register const Quantum *magick_restrict r; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; r=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1,exception); q=QueueCacheViewAuthenticPixels(sharp_view,0,y,sharp_image->columns,1, exception); if ((r == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) sharp_image->columns; x++) { register const Quantum *magick_restrict p; register ssize_t i; ssize_t center, j; j=(ssize_t) ceil((double) width*(1.0-QuantumScale* GetPixelIntensity(edge_image,r))-0.5); if (j < 0) j=0; else if (j > (ssize_t) width) j=(ssize_t) width; if ((j & 0x01) != 0) j--; p=GetCacheViewVirtualPixels(image_view,x-((ssize_t) (width-j)/2L),y- (ssize_t) ((width-j)/2L),width-j,width-j,exception); if (p == (const Quantum *) NULL) break; center=(ssize_t) GetPixelChannels(image)*(width-j)*((width-j)/2L)+ GetPixelChannels(image)*((width-j)/2); for (i=0; i < (ssize_t) GetPixelChannels(sharp_image); i++) { double alpha, gamma, pixel; PixelChannel channel; PixelTrait sharp_traits, traits; register const double *magick_restrict k; register const Quantum *magick_restrict pixels; register ssize_t u; ssize_t v; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); sharp_traits=GetPixelChannelTraits(sharp_image,channel); if ((traits == UndefinedPixelTrait) || (sharp_traits == UndefinedPixelTrait)) continue; if ((sharp_traits & CopyPixelTrait) != 0) { SetPixelChannel(sharp_image,channel,p[center+i],q); continue; } k=kernel[j]; pixels=p; pixel=0.0; gamma=0.0; if ((sharp_traits & BlendPixelTrait) == 0) { /* No alpha blending. */ for (v=0; v < (ssize_t) (width-j); v++) { for (u=0; u < (ssize_t) (width-j); u++) { pixel+=(*k)*pixels[i]; gamma+=(*k); k++; pixels+=GetPixelChannels(image); } } gamma=PerceptibleReciprocal(gamma); SetPixelChannel(sharp_image,channel,ClampToQuantum(gamma*pixel),q); continue; } /* Alpha blending. */ for (v=0; v < (ssize_t) (width-j); v++) { for (u=0; u < (ssize_t) (width-j); u++) { alpha=(double) (QuantumScale*GetPixelAlpha(image,pixels)); pixel+=(*k)*alpha*pixels[i]; gamma+=(*k)*alpha; k++; pixels+=GetPixelChannels(image); } } gamma=PerceptibleReciprocal(gamma); SetPixelChannel(sharp_image,channel,ClampToQuantum(gamma*pixel),q); } q+=GetPixelChannels(sharp_image); r+=GetPixelChannels(edge_image); } if (SyncCacheViewAuthenticPixels(sharp_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(image,AdaptiveSharpenImageTag,progress, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } sharp_image->type=image->type; sharp_view=DestroyCacheView(sharp_view); edge_view=DestroyCacheView(edge_view); image_view=DestroyCacheView(image_view); edge_image=DestroyImage(edge_image); for (i=0; i < (ssize_t) width; i+=2) kernel[i]=(double *) RelinquishAlignedMemory(kernel[i]); kernel=(double **) RelinquishAlignedMemory(kernel); if (status == MagickFalse) sharp_image=DestroyImage(sharp_image); return(sharp_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % B l u r I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % BlurImage() blurs an image. We convolve the image with a Gaussian operator % of the given radius and standard deviation (sigma). For reasonable results, % the radius should be larger than sigma. Use a radius of 0 and BlurImage() % selects a suitable radius for you. % % The format of the BlurImage method is: % % Image *BlurImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *BlurImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { char geometry[MagickPathExtent]; KernelInfo *kernel_info; Image *blur_image; assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); #if defined(MAGICKCORE_OPENCL_SUPPORT) blur_image=AccelerateBlurImage(image,radius,sigma,exception); if (blur_image != (Image *) NULL) return(blur_image); #endif (void) FormatLocaleString(geometry,MagickPathExtent, "blur:%.20gx%.20g;blur:%.20gx%.20g+90",radius,sigma,radius,sigma); kernel_info=AcquireKernelInfo(geometry,exception); if (kernel_info == (KernelInfo *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); blur_image=ConvolveImage(image,kernel_info,exception); kernel_info=DestroyKernelInfo(kernel_info); return(blur_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C o n v o l v e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ConvolveImage() applies a custom convolution kernel to the image. % % The format of the ConvolveImage method is: % % Image *ConvolveImage(const Image *image,const KernelInfo *kernel, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o kernel: the filtering kernel. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *ConvolveImage(const Image *image, const KernelInfo *kernel_info,ExceptionInfo *exception) { Image *convolve_image; #if defined(MAGICKCORE_OPENCL_SUPPORT) convolve_image=AccelerateConvolveImage(image,kernel_info,exception); if (convolve_image != (Image *) NULL) return(convolve_image); #endif convolve_image=MorphologyImage(image,ConvolveMorphology,1,kernel_info, exception); return(convolve_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % D e s p e c k l e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DespeckleImage() reduces the speckle noise in an image while perserving the % edges of the original image. A speckle removing filter uses a complementary % hulling technique (raising pixels that are darker than their surrounding % neighbors, then complementarily lowering pixels that are brighter than their % surrounding neighbors) to reduce the speckle index of that image (reference % Crimmins speckle removal). % % The format of the DespeckleImage method is: % % Image *DespeckleImage(const Image *image,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ static void Hull(const Image *image,const ssize_t x_offset, const ssize_t y_offset,const size_t columns,const size_t rows, const int polarity,Quantum *magick_restrict f,Quantum *magick_restrict g) { register Quantum *p, *q, *r, *s; ssize_t y; assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(f != (Quantum *) NULL); assert(g != (Quantum *) NULL); p=f+(columns+2); q=g+(columns+2); r=p+(y_offset*(columns+2)+x_offset); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) \ magick_number_threads(image,image,rows,1) #endif for (y=0; y < (ssize_t) rows; y++) { MagickRealType v; register ssize_t i, x; i=(2*y+1)+y*columns; if (polarity > 0) for (x=0; x < (ssize_t) columns; x++) { v=(MagickRealType) p[i]; if ((MagickRealType) r[i] >= (v+ScaleCharToQuantum(2))) v+=ScaleCharToQuantum(1); q[i]=(Quantum) v; i++; } else for (x=0; x < (ssize_t) columns; x++) { v=(MagickRealType) p[i]; if ((MagickRealType) r[i] <= (v-ScaleCharToQuantum(2))) v-=ScaleCharToQuantum(1); q[i]=(Quantum) v; i++; } } p=f+(columns+2); q=g+(columns+2); r=q+(y_offset*(columns+2)+x_offset); s=q-(y_offset*(columns+2)+x_offset); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) \ magick_number_threads(image,image,rows,1) #endif for (y=0; y < (ssize_t) rows; y++) { register ssize_t i, x; MagickRealType v; i=(2*y+1)+y*columns; if (polarity > 0) for (x=0; x < (ssize_t) columns; x++) { v=(MagickRealType) q[i]; if (((MagickRealType) s[i] >= (v+ScaleCharToQuantum(2))) && ((MagickRealType) r[i] > v)) v+=ScaleCharToQuantum(1); p[i]=(Quantum) v; i++; } else for (x=0; x < (ssize_t) columns; x++) { v=(MagickRealType) q[i]; if (((MagickRealType) s[i] <= (v-ScaleCharToQuantum(2))) && ((MagickRealType) r[i] < v)) v-=ScaleCharToQuantum(1); p[i]=(Quantum) v; i++; } } } MagickExport Image *DespeckleImage(const Image *image,ExceptionInfo *exception) { #define DespeckleImageTag "Despeckle/Image" CacheView *despeckle_view, *image_view; Image *despeckle_image; MagickBooleanType status; MemoryInfo *buffer_info, *pixel_info; Quantum *magick_restrict buffer, *magick_restrict pixels; register ssize_t i; size_t length; static const ssize_t X[4] = {0, 1, 1,-1}, Y[4] = {1, 0, 1, 1}; /* Allocate despeckled image. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); #if defined(MAGICKCORE_OPENCL_SUPPORT) despeckle_image=AccelerateDespeckleImage(image,exception); if (despeckle_image != (Image *) NULL) return(despeckle_image); #endif despeckle_image=CloneImage(image,0,0,MagickTrue,exception); if (despeckle_image == (Image *) NULL) return((Image *) NULL); status=SetImageStorageClass(despeckle_image,DirectClass,exception); if (status == MagickFalse) { despeckle_image=DestroyImage(despeckle_image); return((Image *) NULL); } /* Allocate image buffer. */ length=(size_t) ((image->columns+2)*(image->rows+2)); pixel_info=AcquireVirtualMemory(length,sizeof(*pixels)); buffer_info=AcquireVirtualMemory(length,sizeof(*buffer)); if ((pixel_info == (MemoryInfo *) NULL) || (buffer_info == (MemoryInfo *) NULL)) { if (buffer_info != (MemoryInfo *) NULL) buffer_info=RelinquishVirtualMemory(buffer_info); if (pixel_info != (MemoryInfo *) NULL) pixel_info=RelinquishVirtualMemory(pixel_info); despeckle_image=DestroyImage(despeckle_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } pixels=(Quantum *) GetVirtualMemoryBlob(pixel_info); buffer=(Quantum *) GetVirtualMemoryBlob(buffer_info); /* Reduce speckle in the image. */ status=MagickTrue; image_view=AcquireVirtualCacheView(image,exception); despeckle_view=AcquireAuthenticCacheView(despeckle_image,exception); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel; PixelTrait despeckle_traits, traits; register ssize_t k, x; ssize_t j, y; if (status == MagickFalse) continue; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); despeckle_traits=GetPixelChannelTraits(despeckle_image,channel); if ((traits == UndefinedPixelTrait) || (despeckle_traits == UndefinedPixelTrait)) continue; if ((despeckle_traits & CopyPixelTrait) != 0) continue; (void) memset(pixels,0,length*sizeof(*pixels)); j=(ssize_t) image->columns+2; for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) { status=MagickFalse; continue; } j++; for (x=0; x < (ssize_t) image->columns; x++) { pixels[j++]=p[i]; p+=GetPixelChannels(image); } j++; } (void) memset(buffer,0,length*sizeof(*buffer)); for (k=0; k < 4; k++) { Hull(image,X[k],Y[k],image->columns,image->rows,1,pixels,buffer); Hull(image,-X[k],-Y[k],image->columns,image->rows,1,pixels,buffer); Hull(image,-X[k],-Y[k],image->columns,image->rows,-1,pixels,buffer); Hull(image,X[k],Y[k],image->columns,image->rows,-1,pixels,buffer); } j=(ssize_t) image->columns+2; for (y=0; y < (ssize_t) image->rows; y++) { MagickBooleanType sync; register Quantum *magick_restrict q; q=GetCacheViewAuthenticPixels(despeckle_view,0,y,despeckle_image->columns, 1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } j++; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelChannel(despeckle_image,channel,pixels[j++],q); q+=GetPixelChannels(despeckle_image); } sync=SyncCacheViewAuthenticPixels(despeckle_view,exception); if (sync == MagickFalse) status=MagickFalse; j++; } if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; proceed=SetImageProgress(image,DespeckleImageTag,(MagickOffsetType) i, GetPixelChannels(image)); if (proceed == MagickFalse) status=MagickFalse; } } despeckle_view=DestroyCacheView(despeckle_view); image_view=DestroyCacheView(image_view); buffer_info=RelinquishVirtualMemory(buffer_info); pixel_info=RelinquishVirtualMemory(pixel_info); despeckle_image->type=image->type; if (status == MagickFalse) despeckle_image=DestroyImage(despeckle_image); return(despeckle_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % E d g e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % EdgeImage() finds edges in an image. Radius defines the radius of the % convolution filter. Use a radius of 0 and EdgeImage() selects a suitable % radius for you. % % The format of the EdgeImage method is: % % Image *EdgeImage(const Image *image,const double radius, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the pixel neighborhood. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *EdgeImage(const Image *image,const double radius, ExceptionInfo *exception) { Image *edge_image; KernelInfo *kernel_info; register ssize_t i; size_t width; assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); width=GetOptimalKernelWidth1D(radius,0.5); kernel_info=AcquireKernelInfo((const char *) NULL,exception); if (kernel_info == (KernelInfo *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); (void) memset(kernel_info,0,sizeof(*kernel_info)); kernel_info->width=width; kernel_info->height=width; kernel_info->x=(ssize_t) (kernel_info->width-1)/2; kernel_info->y=(ssize_t) (kernel_info->height-1)/2; kernel_info->signature=MagickCoreSignature; kernel_info->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel_info->width,kernel_info->height* sizeof(*kernel_info->values))); if (kernel_info->values == (MagickRealType *) NULL) { kernel_info=DestroyKernelInfo(kernel_info); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } for (i=0; i < (ssize_t) (kernel_info->width*kernel_info->height); i++) kernel_info->values[i]=(-1.0); kernel_info->values[i/2]=(double) kernel_info->width*kernel_info->height-1.0; edge_image=ConvolveImage(image,kernel_info,exception); kernel_info=DestroyKernelInfo(kernel_info); return(edge_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % E m b o s s I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % EmbossImage() returns a grayscale image with a three-dimensional effect. % We convolve the image with a Gaussian operator of the given radius and % standard deviation (sigma). For reasonable results, radius should be % larger than sigma. Use a radius of 0 and Emboss() selects a suitable % radius for you. % % The format of the EmbossImage method is: % % Image *EmbossImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the pixel neighborhood. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *EmbossImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { double gamma, normalize; Image *emboss_image; KernelInfo *kernel_info; register ssize_t i; size_t width; ssize_t j, k, u, v; assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); width=GetOptimalKernelWidth1D(radius,sigma); kernel_info=AcquireKernelInfo((const char *) NULL,exception); if (kernel_info == (KernelInfo *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); kernel_info->width=width; kernel_info->height=width; kernel_info->x=(ssize_t) (width-1)/2; kernel_info->y=(ssize_t) (width-1)/2; kernel_info->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel_info->width,kernel_info->width* sizeof(*kernel_info->values))); if (kernel_info->values == (MagickRealType *) NULL) { kernel_info=DestroyKernelInfo(kernel_info); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } j=(ssize_t) (kernel_info->width-1)/2; k=j; i=0; for (v=(-j); v <= j; v++) { for (u=(-j); u <= j; u++) { kernel_info->values[i]=(MagickRealType) (((u < 0) || (v < 0) ? -8.0 : 8.0)*exp(-((double) u*u+v*v)/(2.0*MagickSigma*MagickSigma))/ (2.0*MagickPI*MagickSigma*MagickSigma)); if (u != k) kernel_info->values[i]=0.0; i++; } k--; } normalize=0.0; for (i=0; i < (ssize_t) (kernel_info->width*kernel_info->height); i++) normalize+=kernel_info->values[i]; gamma=PerceptibleReciprocal(normalize); for (i=0; i < (ssize_t) (kernel_info->width*kernel_info->height); i++) kernel_info->values[i]*=gamma; emboss_image=ConvolveImage(image,kernel_info,exception); kernel_info=DestroyKernelInfo(kernel_info); if (emboss_image != (Image *) NULL) (void) EqualizeImage(emboss_image,exception); return(emboss_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G a u s s i a n B l u r I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GaussianBlurImage() blurs an image. We convolve the image with a % Gaussian operator of the given radius and standard deviation (sigma). % For reasonable results, the radius should be larger than sigma. Use a % radius of 0 and GaussianBlurImage() selects a suitable radius for you % % The format of the GaussianBlurImage method is: % % Image *GaussianBlurImage(const Image *image,onst double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *GaussianBlurImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { char geometry[MagickPathExtent]; KernelInfo *kernel_info; Image *blur_image; assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); (void) FormatLocaleString(geometry,MagickPathExtent,"gaussian:%.20gx%.20g", radius,sigma); kernel_info=AcquireKernelInfo(geometry,exception); if (kernel_info == (KernelInfo *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); blur_image=ConvolveImage(image,kernel_info,exception); kernel_info=DestroyKernelInfo(kernel_info); return(blur_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % K u w a h a r a I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % KuwaharaImage() is an edge preserving noise reduction filter. % % The format of the KuwaharaImage method is: % % Image *KuwaharaImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the square window radius. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o exception: return any errors or warnings in this structure. % */ static inline MagickRealType GetMeanLuma(const Image *magick_restrict image, const double *magick_restrict pixel) { return(0.212656f*pixel[image->channel_map[RedPixelChannel].offset]+ 0.715158f*pixel[image->channel_map[GreenPixelChannel].offset]+ 0.072186f*pixel[image->channel_map[BluePixelChannel].offset]); /* Rec709 */ } MagickExport Image *KuwaharaImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { #define KuwaharaImageTag "Kuwahara/Image" CacheView *image_view, *kuwahara_view; Image *gaussian_image, *kuwahara_image; MagickBooleanType status; MagickOffsetType progress; size_t width; ssize_t y; /* Initialize Kuwahara image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); width=(size_t) radius+1; gaussian_image=BlurImage(image,radius,sigma,exception); if (gaussian_image == (Image *) NULL) return((Image *) NULL); kuwahara_image=CloneImage(image,0,0,MagickTrue,exception); if (kuwahara_image == (Image *) NULL) { gaussian_image=DestroyImage(gaussian_image); return((Image *) NULL); } if (SetImageStorageClass(kuwahara_image,DirectClass,exception) == MagickFalse) { gaussian_image=DestroyImage(gaussian_image); kuwahara_image=DestroyImage(kuwahara_image); return((Image *) NULL); } /* Edge preserving noise reduction filter. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(gaussian_image,exception); kuwahara_view=AcquireAuthenticCacheView(kuwahara_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(image,kuwahara_image,gaussian_image->rows,1) #endif for (y=0; y < (ssize_t) gaussian_image->rows; y++) { register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=QueueCacheViewAuthenticPixels(kuwahara_view,0,y,kuwahara_image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) gaussian_image->columns; x++) { const Quantum *magick_restrict p; double min_variance; RectangleInfo quadrant, target; register size_t i; min_variance=MagickMaximumValue; SetGeometry(gaussian_image,&target); quadrant.width=width; quadrant.height=width; for (i=0; i < 4; i++) { const Quantum *magick_restrict k; double mean[MaxPixelChannels], variance; register ssize_t n; ssize_t j; quadrant.x=x; quadrant.y=y; switch (i) { case 0: { quadrant.x=x-(ssize_t) (width-1); quadrant.y=y-(ssize_t) (width-1); break; } case 1: { quadrant.y=y-(ssize_t) (width-1); break; } case 2: { quadrant.x=x-(ssize_t) (width-1); break; } case 3: default: break; } p=GetCacheViewVirtualPixels(image_view,quadrant.x,quadrant.y, quadrant.width,quadrant.height,exception); if (p == (const Quantum *) NULL) break; for (j=0; j < (ssize_t) GetPixelChannels(gaussian_image); j++) mean[j]=0.0; k=p; for (n=0; n < (ssize_t) (width*width); n++) { for (j=0; j < (ssize_t) GetPixelChannels(gaussian_image); j++) mean[j]+=(double) k[j]; k+=GetPixelChannels(gaussian_image); } for (j=0; j < (ssize_t) GetPixelChannels(gaussian_image); j++) mean[j]/=(double) (width*width); k=p; variance=0.0; for (n=0; n < (ssize_t) (width*width); n++) { double luma; luma=GetPixelLuma(gaussian_image,k); variance+=(luma-GetMeanLuma(gaussian_image,mean))* (luma-GetMeanLuma(gaussian_image,mean)); k+=GetPixelChannels(gaussian_image); } if (variance < min_variance) { min_variance=variance; target=quadrant; } } if (i < 4) { status=MagickFalse; break; } status=InterpolatePixelChannels(gaussian_image,image_view,kuwahara_image, UndefinedInterpolatePixel,(double) target.x+target.width/2.0,(double) target.y+target.height/2.0,q,exception); if (status == MagickFalse) break; q+=GetPixelChannels(kuwahara_image); } if (SyncCacheViewAuthenticPixels(kuwahara_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(image,KuwaharaImageTag,progress,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } kuwahara_view=DestroyCacheView(kuwahara_view); image_view=DestroyCacheView(image_view); gaussian_image=DestroyImage(gaussian_image); if (status == MagickFalse) kuwahara_image=DestroyImage(kuwahara_image); return(kuwahara_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % L o c a l C o n t r a s t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % LocalContrastImage() attempts to increase the appearance of large-scale % light-dark transitions. Local contrast enhancement works similarly to % sharpening with an unsharp mask, however the mask is instead created using % an image with a greater blur distance. % % The format of the LocalContrastImage method is: % % Image *LocalContrastImage(const Image *image, const double radius, % const double strength,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian blur, in percentage with 100% % resulting in a blur radius of 20% of largest dimension. % % o strength: the strength of the blur mask in percentage. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *LocalContrastImage(const Image *image,const double radius, const double strength,ExceptionInfo *exception) { #define LocalContrastImageTag "LocalContrast/Image" CacheView *image_view, *contrast_view; float *interImage, *scanLinePixels, totalWeight; Image *contrast_image; MagickBooleanType status; MemoryInfo *scanLinePixels_info, *interImage_info; ssize_t scanLineSize, width; /* Initialize contrast image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); #if defined(MAGICKCORE_OPENCL_SUPPORT) contrast_image=AccelerateLocalContrastImage(image,radius,strength,exception); if (contrast_image != (Image *) NULL) return(contrast_image); #endif contrast_image=CloneImage(image,0,0,MagickTrue,exception); if (contrast_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(contrast_image,DirectClass,exception) == MagickFalse) { contrast_image=DestroyImage(contrast_image); return((Image *) NULL); } image_view=AcquireVirtualCacheView(image,exception); contrast_view=AcquireAuthenticCacheView(contrast_image,exception); scanLineSize=(ssize_t) MagickMax(image->columns,image->rows); width=(ssize_t) scanLineSize*0.002f*fabs(radius); scanLineSize+=(2*width); scanLinePixels_info=AcquireVirtualMemory((size_t) GetOpenMPMaximumThreads()* scanLineSize,sizeof(*scanLinePixels)); if (scanLinePixels_info == (MemoryInfo *) NULL) { contrast_view=DestroyCacheView(contrast_view); image_view=DestroyCacheView(image_view); contrast_image=DestroyImage(contrast_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } scanLinePixels=(float *) GetVirtualMemoryBlob(scanLinePixels_info); /* Create intermediate buffer. */ interImage_info=AcquireVirtualMemory(image->rows*(image->columns+(2*width)), sizeof(*interImage)); if (interImage_info == (MemoryInfo *) NULL) { scanLinePixels_info=RelinquishVirtualMemory(scanLinePixels_info); contrast_view=DestroyCacheView(contrast_view); image_view=DestroyCacheView(image_view); contrast_image=DestroyImage(contrast_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } interImage=(float *) GetVirtualMemoryBlob(interImage_info); totalWeight=(float) ((width+1)*(width+1)); /* Vertical pass. */ status=MagickTrue; { ssize_t x; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) \ magick_number_threads(image,image,image->columns,1) #endif for (x=0; x < (ssize_t) image->columns; x++) { const int id = GetOpenMPThreadId(); const Quantum *magick_restrict p; float *out, *pix, *pixels; register ssize_t y; ssize_t i; if (status == MagickFalse) continue; pixels=scanLinePixels; pixels+=id*scanLineSize; pix=pixels; p=GetCacheViewVirtualPixels(image_view,x,-width,1,image->rows+(2*width), exception); if (p == (const Quantum *) NULL) { status=MagickFalse; continue; } for (y=0; y < (ssize_t) image->rows+(2*width); y++) { *pix++=(float)GetPixelLuma(image,p); p+=image->number_channels; } out=interImage+x+width; for (y=0; y < (ssize_t) image->rows; y++) { float sum, weight; weight=1.0f; sum=0; pix=pixels+y; for (i=0; i < width; i++) { sum+=weight*(*pix++); weight+=1.0f; } for (i=width+1; i < (2*width); i++) { sum+=weight*(*pix++); weight-=1.0f; } /* write to output */ *out=sum/totalWeight; /* mirror into padding */ if (x <= width && x != 0) *(out-(x*2))=*out; if ((x > (ssize_t) image->columns-width-2) && (x != (ssize_t) image->columns-1)) *(out+((image->columns-x-1)*2))=*out; out+=image->columns+(width*2); } } } /* Horizontal pass. */ { ssize_t y; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); const Quantum *magick_restrict p; float *pix, *pixels; register Quantum *magick_restrict q; register ssize_t x; ssize_t i; if (status == MagickFalse) continue; pixels=scanLinePixels; pixels+=id*scanLineSize; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=GetCacheViewAuthenticPixels(contrast_view,0,y,image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } memcpy(pixels,interImage+(y*(image->columns+(2*width))),(image->columns+ (2*width))*sizeof(float)); for (x=0; x < (ssize_t) image->columns; x++) { float mult, srcVal, sum, weight; PixelTrait traits; weight=1.0f; sum=0; pix=pixels+x; for (i=0; i < width; i++) { sum+=weight*(*pix++); weight+=1.0f; } for (i=width+1; i < (2*width); i++) { sum+=weight*(*pix++); weight-=1.0f; } /* Apply and write */ srcVal=(float) GetPixelLuma(image,p); mult=(srcVal-(sum/totalWeight))*(strength/100.0f); mult=(srcVal+mult)/srcVal; traits=GetPixelChannelTraits(image,RedPixelChannel); if ((traits & UpdatePixelTrait) != 0) SetPixelRed(contrast_image,ClampToQuantum(GetPixelRed(image,p)*mult), q); traits=GetPixelChannelTraits(image,GreenPixelChannel); if ((traits & UpdatePixelTrait) != 0) SetPixelGreen(contrast_image,ClampToQuantum(GetPixelGreen(image,p)* mult),q); traits=GetPixelChannelTraits(image,BluePixelChannel); if ((traits & UpdatePixelTrait) != 0) SetPixelBlue(contrast_image,ClampToQuantum(GetPixelBlue(image,p)* mult),q); p+=image->number_channels; q+=contrast_image->number_channels; } if (SyncCacheViewAuthenticPixels(contrast_view,exception) == MagickFalse) status=MagickFalse; } } scanLinePixels_info=RelinquishVirtualMemory(scanLinePixels_info); interImage_info=RelinquishVirtualMemory(interImage_info); contrast_view=DestroyCacheView(contrast_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) contrast_image=DestroyImage(contrast_image); return(contrast_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M o t i o n B l u r I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % MotionBlurImage() simulates motion blur. We convolve the image with a % Gaussian operator of the given radius and standard deviation (sigma). % For reasonable results, radius should be larger than sigma. Use a % radius of 0 and MotionBlurImage() selects a suitable radius for you. % Angle gives the angle of the blurring motion. % % Andrew Protano contributed this effect. % % The format of the MotionBlurImage method is: % % Image *MotionBlurImage(const Image *image,const double radius, % const double sigma,const double angle,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting % the center pixel. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o angle: Apply the effect along this angle. % % o exception: return any errors or warnings in this structure. % */ static MagickRealType *GetMotionBlurKernel(const size_t width, const double sigma) { MagickRealType *kernel, normalize; register ssize_t i; /* Generate a 1-D convolution kernel. */ (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); kernel=(MagickRealType *) MagickAssumeAligned(AcquireAlignedMemory((size_t) width,sizeof(*kernel))); if (kernel == (MagickRealType *) NULL) return(kernel); normalize=0.0; for (i=0; i < (ssize_t) width; i++) { kernel[i]=(MagickRealType) (exp((-((double) i*i)/(double) (2.0*MagickSigma* MagickSigma)))/(MagickSQ2PI*MagickSigma)); normalize+=kernel[i]; } for (i=0; i < (ssize_t) width; i++) kernel[i]/=normalize; return(kernel); } MagickExport Image *MotionBlurImage(const Image *image,const double radius, const double sigma,const double angle,ExceptionInfo *exception) { #define BlurImageTag "Blur/Image" CacheView *blur_view, *image_view, *motion_view; Image *blur_image; MagickBooleanType status; MagickOffsetType progress; MagickRealType *kernel; OffsetInfo *offset; PointInfo point; register ssize_t i; size_t width; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); width=GetOptimalKernelWidth1D(radius,sigma); kernel=GetMotionBlurKernel(width,sigma); if (kernel == (MagickRealType *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); offset=(OffsetInfo *) AcquireQuantumMemory(width,sizeof(*offset)); if (offset == (OffsetInfo *) NULL) { kernel=(MagickRealType *) RelinquishAlignedMemory(kernel); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } point.x=(double) width*sin(DegreesToRadians(angle)); point.y=(double) width*cos(DegreesToRadians(angle)); for (i=0; i < (ssize_t) width; i++) { offset[i].x=(ssize_t) ceil((double) (i*point.y)/hypot(point.x,point.y)-0.5); offset[i].y=(ssize_t) ceil((double) (i*point.x)/hypot(point.x,point.y)-0.5); } /* Motion blur image. */ #if defined(MAGICKCORE_OPENCL_SUPPORT) blur_image=AccelerateMotionBlurImage(image,kernel,width,offset,exception); if (blur_image != (Image *) NULL) { kernel=(MagickRealType *) RelinquishAlignedMemory(kernel); offset=(OffsetInfo *) RelinquishMagickMemory(offset); return(blur_image); } #endif blur_image=CloneImage(image,0,0,MagickTrue,exception); if (blur_image == (Image *) NULL) { kernel=(MagickRealType *) RelinquishAlignedMemory(kernel); offset=(OffsetInfo *) RelinquishMagickMemory(offset); return((Image *) NULL); } if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse) { kernel=(MagickRealType *) RelinquishAlignedMemory(kernel); offset=(OffsetInfo *) RelinquishMagickMemory(offset); blur_image=DestroyImage(blur_image); return((Image *) NULL); } status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); motion_view=AcquireVirtualCacheView(image,exception); blur_view=AcquireAuthenticCacheView(blur_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(image,blur_image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { double alpha, gamma, pixel; PixelChannel channel; PixelTrait blur_traits, traits; register const Quantum *magick_restrict r; register MagickRealType *magick_restrict k; register ssize_t j; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); blur_traits=GetPixelChannelTraits(blur_image,channel); if ((traits == UndefinedPixelTrait) || (blur_traits == UndefinedPixelTrait)) continue; if ((blur_traits & CopyPixelTrait) != 0) { SetPixelChannel(blur_image,channel,p[i],q); continue; } k=kernel; pixel=0.0; if ((blur_traits & BlendPixelTrait) == 0) { for (j=0; j < (ssize_t) width; j++) { r=GetCacheViewVirtualPixels(motion_view,x+offset[j].x,y+ offset[j].y,1,1,exception); if (r == (const Quantum *) NULL) { status=MagickFalse; continue; } pixel+=(*k)*r[i]; k++; } SetPixelChannel(blur_image,channel,ClampToQuantum(pixel),q); continue; } alpha=0.0; gamma=0.0; for (j=0; j < (ssize_t) width; j++) { r=GetCacheViewVirtualPixels(motion_view,x+offset[j].x,y+offset[j].y,1, 1,exception); if (r == (const Quantum *) NULL) { status=MagickFalse; continue; } alpha=(double) (QuantumScale*GetPixelAlpha(image,r)); pixel+=(*k)*alpha*r[i]; gamma+=(*k)*alpha; k++; } gamma=PerceptibleReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); } p+=GetPixelChannels(image); q+=GetPixelChannels(blur_image); } if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(image,BlurImageTag,progress,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } blur_view=DestroyCacheView(blur_view); motion_view=DestroyCacheView(motion_view); image_view=DestroyCacheView(image_view); kernel=(MagickRealType *) RelinquishAlignedMemory(kernel); offset=(OffsetInfo *) RelinquishMagickMemory(offset); if (status == MagickFalse) blur_image=DestroyImage(blur_image); return(blur_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % P r e v i e w I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % PreviewImage() tiles 9 thumbnails of the specified image with an image % processing operation applied with varying parameters. This may be helpful % pin-pointing an appropriate parameter for a particular image processing % operation. % % The format of the PreviewImages method is: % % Image *PreviewImages(const Image *image,const PreviewType preview, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o preview: the image processing operation. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *PreviewImage(const Image *image,const PreviewType preview, ExceptionInfo *exception) { #define NumberTiles 9 #define PreviewImageTag "Preview/Image" #define DefaultPreviewGeometry "204x204+10+10" char factor[MagickPathExtent], label[MagickPathExtent]; double degrees, gamma, percentage, radius, sigma, threshold; extern const char DefaultTileFrame[]; Image *images, *montage_image, *preview_image, *thumbnail; ImageInfo *preview_info; MagickBooleanType proceed; MontageInfo *montage_info; QuantizeInfo quantize_info; RectangleInfo geometry; register ssize_t i, x; size_t colors; ssize_t y; /* Open output image file. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); colors=2; degrees=0.0; gamma=(-0.2f); preview_info=AcquireImageInfo(); SetGeometry(image,&geometry); (void) ParseMetaGeometry(DefaultPreviewGeometry,&geometry.x,&geometry.y, &geometry.width,&geometry.height); images=NewImageList(); percentage=12.5; GetQuantizeInfo(&quantize_info); radius=0.0; sigma=1.0; threshold=0.0; x=0; y=0; for (i=0; i < NumberTiles; i++) { thumbnail=ThumbnailImage(image,geometry.width,geometry.height,exception); if (thumbnail == (Image *) NULL) break; (void) SetImageProgressMonitor(thumbnail,(MagickProgressMonitor) NULL, (void *) NULL); (void) SetImageProperty(thumbnail,"label",DefaultTileLabel,exception); if (i == (NumberTiles/2)) { (void) QueryColorCompliance("#dfdfdf",AllCompliance, &thumbnail->matte_color,exception); AppendImageToList(&images,thumbnail); continue; } switch (preview) { case RotatePreview: { degrees+=45.0; preview_image=RotateImage(thumbnail,degrees,exception); (void) FormatLocaleString(label,MagickPathExtent,"rotate %g",degrees); break; } case ShearPreview: { degrees+=5.0; preview_image=ShearImage(thumbnail,degrees,degrees,exception); (void) FormatLocaleString(label,MagickPathExtent,"shear %gx%g",degrees, 2.0*degrees); break; } case RollPreview: { x=(ssize_t) ((i+1)*thumbnail->columns)/NumberTiles; y=(ssize_t) ((i+1)*thumbnail->rows)/NumberTiles; preview_image=RollImage(thumbnail,x,y,exception); (void) FormatLocaleString(label,MagickPathExtent,"roll %+.20gx%+.20g", (double) x,(double) y); break; } case HuePreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; (void) FormatLocaleString(factor,MagickPathExtent,"100,100,%g",2.0* percentage); (void) ModulateImage(preview_image,factor,exception); (void) FormatLocaleString(label,MagickPathExtent,"modulate %s",factor); break; } case SaturationPreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; (void) FormatLocaleString(factor,MagickPathExtent,"100,%g",2.0* percentage); (void) ModulateImage(preview_image,factor,exception); (void) FormatLocaleString(label,MagickPathExtent,"modulate %s",factor); break; } case BrightnessPreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; (void) FormatLocaleString(factor,MagickPathExtent,"%g",2.0*percentage); (void) ModulateImage(preview_image,factor,exception); (void) FormatLocaleString(label,MagickPathExtent,"modulate %s",factor); break; } case GammaPreview: default: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; gamma+=0.4f; (void) GammaImage(preview_image,gamma,exception); (void) FormatLocaleString(label,MagickPathExtent,"gamma %g",gamma); break; } case SpiffPreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image != (Image *) NULL) for (x=0; x < i; x++) (void) ContrastImage(preview_image,MagickTrue,exception); (void) FormatLocaleString(label,MagickPathExtent,"contrast (%.20g)", (double) i+1); break; } case DullPreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; for (x=0; x < i; x++) (void) ContrastImage(preview_image,MagickFalse,exception); (void) FormatLocaleString(label,MagickPathExtent,"+contrast (%.20g)", (double) i+1); break; } case GrayscalePreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; colors<<=1; quantize_info.number_colors=colors; quantize_info.colorspace=GRAYColorspace; (void) QuantizeImage(&quantize_info,preview_image,exception); (void) FormatLocaleString(label,MagickPathExtent, "-colorspace gray -colors %.20g",(double) colors); break; } case QuantizePreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; colors<<=1; quantize_info.number_colors=colors; (void) QuantizeImage(&quantize_info,preview_image,exception); (void) FormatLocaleString(label,MagickPathExtent,"colors %.20g", (double) colors); break; } case DespecklePreview: { for (x=0; x < (i-1); x++) { preview_image=DespeckleImage(thumbnail,exception); if (preview_image == (Image *) NULL) break; thumbnail=DestroyImage(thumbnail); thumbnail=preview_image; } preview_image=DespeckleImage(thumbnail,exception); if (preview_image == (Image *) NULL) break; (void) FormatLocaleString(label,MagickPathExtent,"despeckle (%.20g)", (double) i+1); break; } case ReduceNoisePreview: { preview_image=StatisticImage(thumbnail,NonpeakStatistic,(size_t) radius,(size_t) radius,exception); (void) FormatLocaleString(label,MagickPathExtent,"noise %g",radius); break; } case AddNoisePreview: { switch ((int) i) { case 0: { (void) CopyMagickString(factor,"uniform",MagickPathExtent); break; } case 1: { (void) CopyMagickString(factor,"gaussian",MagickPathExtent); break; } case 2: { (void) CopyMagickString(factor,"multiplicative",MagickPathExtent); break; } case 3: { (void) CopyMagickString(factor,"impulse",MagickPathExtent); break; } case 5: { (void) CopyMagickString(factor,"laplacian",MagickPathExtent); break; } case 6: { (void) CopyMagickString(factor,"Poisson",MagickPathExtent); break; } default: { (void) CopyMagickString(thumbnail->magick,"NULL",MagickPathExtent); break; } } preview_image=StatisticImage(thumbnail,NonpeakStatistic,(size_t) i, (size_t) i,exception); (void) FormatLocaleString(label,MagickPathExtent,"+noise %s",factor); break; } case SharpenPreview: { preview_image=SharpenImage(thumbnail,radius,sigma,exception); (void) FormatLocaleString(label,MagickPathExtent,"sharpen %gx%g", radius,sigma); break; } case BlurPreview: { preview_image=BlurImage(thumbnail,radius,sigma,exception); (void) FormatLocaleString(label,MagickPathExtent,"blur %gx%g",radius, sigma); break; } case ThresholdPreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; (void) BilevelImage(thumbnail,(double) (percentage*((double) QuantumRange+1.0))/100.0,exception); (void) FormatLocaleString(label,MagickPathExtent,"threshold %g", (double) (percentage*((double) QuantumRange+1.0))/100.0); break; } case EdgeDetectPreview: { preview_image=EdgeImage(thumbnail,radius,exception); (void) FormatLocaleString(label,MagickPathExtent,"edge %g",radius); break; } case SpreadPreview: { preview_image=SpreadImage(thumbnail,image->interpolate,radius, exception); (void) FormatLocaleString(label,MagickPathExtent,"spread %g", radius+0.5); break; } case SolarizePreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; (void) SolarizeImage(preview_image,(double) QuantumRange*percentage/ 100.0,exception); (void) FormatLocaleString(label,MagickPathExtent,"solarize %g", (QuantumRange*percentage)/100.0); break; } case ShadePreview: { degrees+=10.0; preview_image=ShadeImage(thumbnail,MagickTrue,degrees,degrees, exception); (void) FormatLocaleString(label,MagickPathExtent,"shade %gx%g",degrees, degrees); break; } case RaisePreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; geometry.width=(size_t) (2*i+2); geometry.height=(size_t) (2*i+2); geometry.x=(i-1)/2; geometry.y=(i-1)/2; (void) RaiseImage(preview_image,&geometry,MagickTrue,exception); (void) FormatLocaleString(label,MagickPathExtent, "raise %.20gx%.20g%+.20g%+.20g",(double) geometry.width,(double) geometry.height,(double) geometry.x,(double) geometry.y); break; } case SegmentPreview: { preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; threshold+=0.4f; (void) SegmentImage(preview_image,sRGBColorspace,MagickFalse,threshold, threshold,exception); (void) FormatLocaleString(label,MagickPathExtent,"segment %gx%g", threshold,threshold); break; } case SwirlPreview: { preview_image=SwirlImage(thumbnail,degrees,image->interpolate, exception); (void) FormatLocaleString(label,MagickPathExtent,"swirl %g",degrees); degrees+=45.0; break; } case ImplodePreview: { degrees+=0.1f; preview_image=ImplodeImage(thumbnail,degrees,image->interpolate, exception); (void) FormatLocaleString(label,MagickPathExtent,"implode %g",degrees); break; } case WavePreview: { degrees+=5.0f; preview_image=WaveImage(thumbnail,0.5*degrees,2.0*degrees, image->interpolate,exception); (void) FormatLocaleString(label,MagickPathExtent,"wave %gx%g",0.5* degrees,2.0*degrees); break; } case OilPaintPreview: { preview_image=OilPaintImage(thumbnail,(double) radius,(double) sigma, exception); (void) FormatLocaleString(label,MagickPathExtent,"charcoal %gx%g", radius,sigma); break; } case CharcoalDrawingPreview: { preview_image=CharcoalImage(thumbnail,(double) radius,(double) sigma, exception); (void) FormatLocaleString(label,MagickPathExtent,"charcoal %gx%g", radius,sigma); break; } case JPEGPreview: { char filename[MagickPathExtent]; int file; MagickBooleanType status; preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception); if (preview_image == (Image *) NULL) break; preview_info->quality=(size_t) percentage; (void) FormatLocaleString(factor,MagickPathExtent,"%.20g",(double) preview_info->quality); file=AcquireUniqueFileResource(filename); if (file != -1) file=close(file)-1; (void) FormatLocaleString(preview_image->filename,MagickPathExtent, "jpeg:%s",filename); status=WriteImage(preview_info,preview_image,exception); if (status != MagickFalse) { Image *quality_image; (void) CopyMagickString(preview_info->filename, preview_image->filename,MagickPathExtent); quality_image=ReadImage(preview_info,exception); if (quality_image != (Image *) NULL) { preview_image=DestroyImage(preview_image); preview_image=quality_image; } } (void) RelinquishUniqueFileResource(preview_image->filename); if ((GetBlobSize(preview_image)/1024) >= 1024) (void) FormatLocaleString(label,MagickPathExtent,"quality %s\n%gmb ", factor,(double) ((MagickOffsetType) GetBlobSize(preview_image))/ 1024.0/1024.0); else if (GetBlobSize(preview_image) >= 1024) (void) FormatLocaleString(label,MagickPathExtent, "quality %s\n%gkb ",factor,(double) ((MagickOffsetType) GetBlobSize(preview_image))/1024.0); else (void) FormatLocaleString(label,MagickPathExtent, "quality %s\n%.20gb ",factor,(double) ((MagickOffsetType) GetBlobSize(thumbnail))); break; } } thumbnail=DestroyImage(thumbnail); percentage+=12.5; radius+=0.5; sigma+=0.25; if (preview_image == (Image *) NULL) break; (void) DeleteImageProperty(preview_image,"label"); (void) SetImageProperty(preview_image,"label",label,exception); AppendImageToList(&images,preview_image); proceed=SetImageProgress(image,PreviewImageTag,(MagickOffsetType) i, NumberTiles); if (proceed == MagickFalse) break; } if (images == (Image *) NULL) { preview_info=DestroyImageInfo(preview_info); return((Image *) NULL); } /* Create the montage. */ montage_info=CloneMontageInfo(preview_info,(MontageInfo *) NULL); (void) CopyMagickString(montage_info->filename,image->filename, MagickPathExtent); montage_info->shadow=MagickTrue; (void) CloneString(&montage_info->tile,"3x3"); (void) CloneString(&montage_info->geometry,DefaultPreviewGeometry); (void) CloneString(&montage_info->frame,DefaultTileFrame); montage_image=MontageImages(images,montage_info,exception); montage_info=DestroyMontageInfo(montage_info); images=DestroyImageList(images); if (montage_image == (Image *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); if (montage_image->montage != (char *) NULL) { /* Free image directory. */ montage_image->montage=(char *) RelinquishMagickMemory( montage_image->montage); if (image->directory != (char *) NULL) montage_image->directory=(char *) RelinquishMagickMemory( montage_image->directory); } preview_info=DestroyImageInfo(preview_info); return(montage_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % R o t a t i o n a l B l u r I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % RotationalBlurImage() applies a radial blur to the image. % % Andrew Protano contributed this effect. % % The format of the RotationalBlurImage method is: % % Image *RotationalBlurImage(const Image *image,const double angle, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o angle: the angle of the radial blur. % % o blur: the blur. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *RotationalBlurImage(const Image *image,const double angle, ExceptionInfo *exception) { CacheView *blur_view, *image_view, *radial_view; double blur_radius, *cos_theta, offset, *sin_theta, theta; Image *blur_image; MagickBooleanType status; MagickOffsetType progress; PointInfo blur_center; register ssize_t i; size_t n; ssize_t y; /* Allocate blur image. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); #if defined(MAGICKCORE_OPENCL_SUPPORT) blur_image=AccelerateRotationalBlurImage(image,angle,exception); if (blur_image != (Image *) NULL) return(blur_image); #endif blur_image=CloneImage(image,0,0,MagickTrue,exception); if (blur_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse) { blur_image=DestroyImage(blur_image); return((Image *) NULL); } blur_center.x=(double) (image->columns-1)/2.0; blur_center.y=(double) (image->rows-1)/2.0; blur_radius=hypot(blur_center.x,blur_center.y); n=(size_t) fabs(4.0*DegreesToRadians(angle)*sqrt((double) blur_radius)+2UL); theta=DegreesToRadians(angle)/(double) (n-1); cos_theta=(double *) AcquireQuantumMemory((size_t) n, sizeof(*cos_theta)); sin_theta=(double *) AcquireQuantumMemory((size_t) n, sizeof(*sin_theta)); if ((cos_theta == (double *) NULL) || (sin_theta == (double *) NULL)) { if (cos_theta != (double *) NULL) cos_theta=(double *) RelinquishMagickMemory(cos_theta); if (sin_theta != (double *) NULL) sin_theta=(double *) RelinquishMagickMemory(sin_theta); blur_image=DestroyImage(blur_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } offset=theta*(double) (n-1)/2.0; for (i=0; i < (ssize_t) n; i++) { cos_theta[i]=cos((double) (theta*i-offset)); sin_theta[i]=sin((double) (theta*i-offset)); } /* Radial blur image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); radial_view=AcquireVirtualCacheView(image,exception); blur_view=AcquireAuthenticCacheView(blur_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(image,blur_image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { double radius; PointInfo center; register ssize_t i; size_t step; center.x=(double) x-blur_center.x; center.y=(double) y-blur_center.y; radius=hypot((double) center.x,center.y); if (radius == 0) step=1; else { step=(size_t) (blur_radius/radius); if (step == 0) step=1; else if (step >= n) step=n-1; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { double gamma, pixel; PixelChannel channel; PixelTrait blur_traits, traits; register const Quantum *magick_restrict r; register ssize_t j; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); blur_traits=GetPixelChannelTraits(blur_image,channel); if ((traits == UndefinedPixelTrait) || (blur_traits == UndefinedPixelTrait)) continue; if ((blur_traits & CopyPixelTrait) != 0) { SetPixelChannel(blur_image,channel,p[i],q); continue; } gamma=0.0; pixel=0.0; if ((GetPixelChannelTraits(image,AlphaPixelChannel) == UndefinedPixelTrait) || (channel == AlphaPixelChannel)) { for (j=0; j < (ssize_t) n; j+=(ssize_t) step) { r=GetCacheViewVirtualPixels(radial_view, (ssize_t) (blur_center.x+ center.x*cos_theta[j]-center.y*sin_theta[j]+0.5),(ssize_t) (blur_center.y+center.x*sin_theta[j]+center.y*cos_theta[j]+0.5), 1,1,exception); if (r == (const Quantum *) NULL) { status=MagickFalse; continue; } pixel+=r[i]; gamma++; } gamma=PerceptibleReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); continue; } for (j=0; j < (ssize_t) n; j+=(ssize_t) step) { double alpha; r=GetCacheViewVirtualPixels(radial_view, (ssize_t) (blur_center.x+ center.x*cos_theta[j]-center.y*sin_theta[j]+0.5),(ssize_t) (blur_center.y+center.x*sin_theta[j]+center.y*cos_theta[j]+0.5), 1,1,exception); if (r == (const Quantum *) NULL) { status=MagickFalse; continue; } alpha=(double) QuantumScale*GetPixelAlpha(image,r); pixel+=alpha*r[i]; gamma+=alpha; } gamma=PerceptibleReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); } p+=GetPixelChannels(image); q+=GetPixelChannels(blur_image); } if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(image,BlurImageTag,progress,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } blur_view=DestroyCacheView(blur_view); radial_view=DestroyCacheView(radial_view); image_view=DestroyCacheView(image_view); cos_theta=(double *) RelinquishMagickMemory(cos_theta); sin_theta=(double *) RelinquishMagickMemory(sin_theta); if (status == MagickFalse) blur_image=DestroyImage(blur_image); return(blur_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e l e c t i v e B l u r I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SelectiveBlurImage() selectively blur pixels within a contrast threshold. % It is similar to the unsharpen mask that sharpens everything with contrast % above a certain threshold. % % The format of the SelectiveBlurImage method is: % % Image *SelectiveBlurImage(const Image *image,const double radius, % const double sigma,const double threshold,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o threshold: only pixels within this contrast threshold are included % in the blur operation. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SelectiveBlurImage(const Image *image,const double radius, const double sigma,const double threshold,ExceptionInfo *exception) { #define SelectiveBlurImageTag "SelectiveBlur/Image" CacheView *blur_view, *image_view, *luminance_view; Image *blur_image, *luminance_image; MagickBooleanType status; MagickOffsetType progress; MagickRealType *kernel; register ssize_t i; size_t width; ssize_t center, j, u, v, y; /* Initialize blur image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); width=GetOptimalKernelWidth1D(radius,sigma); kernel=(MagickRealType *) MagickAssumeAligned(AcquireAlignedMemory((size_t) width,width*sizeof(*kernel))); if (kernel == (MagickRealType *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); j=(ssize_t) (width-1)/2; i=0; for (v=(-j); v <= j; v++) { for (u=(-j); u <= j; u++) kernel[i++]=(MagickRealType) (exp(-((double) u*u+v*v)/(2.0*MagickSigma* MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma)); } if (image->debug != MagickFalse) { char format[MagickPathExtent], *message; register const MagickRealType *k; ssize_t u, v; (void) LogMagickEvent(TransformEvent,GetMagickModule(), " SelectiveBlurImage with %.20gx%.20g kernel:",(double) width,(double) width); message=AcquireString(""); k=kernel; for (v=0; v < (ssize_t) width; v++) { *message='\0'; (void) FormatLocaleString(format,MagickPathExtent,"%.20g: ",(double) v); (void) ConcatenateString(&message,format); for (u=0; u < (ssize_t) width; u++) { (void) FormatLocaleString(format,MagickPathExtent,"%+f ",(double) *k++); (void) ConcatenateString(&message,format); } (void) LogMagickEvent(TransformEvent,GetMagickModule(),"%s",message); } message=DestroyString(message); } blur_image=CloneImage(image,0,0,MagickTrue,exception); if (blur_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse) { blur_image=DestroyImage(blur_image); kernel=(MagickRealType *) RelinquishAlignedMemory(kernel); return((Image *) NULL); } luminance_image=CloneImage(image,0,0,MagickTrue,exception); if (luminance_image == (Image *) NULL) { blur_image=DestroyImage(blur_image); kernel=(MagickRealType *) RelinquishAlignedMemory(kernel); return((Image *) NULL); } status=TransformImageColorspace(luminance_image,GRAYColorspace,exception); if (status == MagickFalse) { luminance_image=DestroyImage(luminance_image); blur_image=DestroyImage(blur_image); kernel=(MagickRealType *) RelinquishAlignedMemory(kernel); return((Image *) NULL); } /* Threshold blur image. */ status=MagickTrue; progress=0; center=(ssize_t) (GetPixelChannels(image)*(image->columns+width)* ((width-1)/2L)+GetPixelChannels(image)*((width-1)/2L)); image_view=AcquireVirtualCacheView(image,exception); luminance_view=AcquireVirtualCacheView(luminance_image,exception); blur_view=AcquireAuthenticCacheView(blur_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(image,blur_image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { double contrast; MagickBooleanType sync; register const Quantum *magick_restrict l, *magick_restrict p; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,-((ssize_t) (width-1)/2L),y-(ssize_t) ((width-1)/2L),image->columns+width,width,exception); l=GetCacheViewVirtualPixels(luminance_view,-((ssize_t) (width-1)/2L),y- (ssize_t) ((width-1)/2L),luminance_image->columns+width,width,exception); q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (l == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { double intensity; register ssize_t i; intensity=GetPixelIntensity(image,p+center); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { double alpha, gamma, pixel; PixelChannel channel; PixelTrait blur_traits, traits; register const MagickRealType *magick_restrict k; register const Quantum *magick_restrict luminance_pixels, *magick_restrict pixels; register ssize_t u; ssize_t v; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); blur_traits=GetPixelChannelTraits(blur_image,channel); if ((traits == UndefinedPixelTrait) || (blur_traits == UndefinedPixelTrait)) continue; if ((blur_traits & CopyPixelTrait) != 0) { SetPixelChannel(blur_image,channel,p[center+i],q); continue; } k=kernel; pixel=0.0; pixels=p; luminance_pixels=l; gamma=0.0; if ((blur_traits & BlendPixelTrait) == 0) { for (v=0; v < (ssize_t) width; v++) { for (u=0; u < (ssize_t) width; u++) { contrast=GetPixelIntensity(luminance_image,luminance_pixels)- intensity; if (fabs(contrast) < threshold) { pixel+=(*k)*pixels[i]; gamma+=(*k); } k++; pixels+=GetPixelChannels(image); luminance_pixels+=GetPixelChannels(luminance_image); } pixels+=GetPixelChannels(image)*image->columns; luminance_pixels+=GetPixelChannels(luminance_image)* luminance_image->columns; } if (fabs((double) gamma) < MagickEpsilon) { SetPixelChannel(blur_image,channel,p[center+i],q); continue; } gamma=PerceptibleReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); continue; } for (v=0; v < (ssize_t) width; v++) { for (u=0; u < (ssize_t) width; u++) { contrast=GetPixelIntensity(image,pixels)-intensity; if (fabs(contrast) < threshold) { alpha=(double) (QuantumScale*GetPixelAlpha(image,pixels)); pixel+=(*k)*alpha*pixels[i]; gamma+=(*k)*alpha; } k++; pixels+=GetPixelChannels(image); luminance_pixels+=GetPixelChannels(luminance_image); } pixels+=GetPixelChannels(image)*image->columns; luminance_pixels+=GetPixelChannels(luminance_image)* luminance_image->columns; } if (fabs((double) gamma) < MagickEpsilon) { SetPixelChannel(blur_image,channel,p[center+i],q); continue; } gamma=PerceptibleReciprocal(gamma); SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); } p+=GetPixelChannels(image); l+=GetPixelChannels(luminance_image); q+=GetPixelChannels(blur_image); } sync=SyncCacheViewAuthenticPixels(blur_view,exception); if (sync == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(image,SelectiveBlurImageTag,progress, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } blur_image->type=image->type; blur_view=DestroyCacheView(blur_view); image_view=DestroyCacheView(image_view); luminance_image=DestroyImage(luminance_image); kernel=(MagickRealType *) RelinquishAlignedMemory(kernel); if (status == MagickFalse) blur_image=DestroyImage(blur_image); return(blur_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S h a d e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ShadeImage() shines a distant light on an image to create a % three-dimensional effect. You control the positioning of the light with % azimuth and elevation; azimuth is measured in degrees off the x axis % and elevation is measured in pixels above the Z axis. % % The format of the ShadeImage method is: % % Image *ShadeImage(const Image *image,const MagickBooleanType gray, % const double azimuth,const double elevation,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o gray: A value other than zero shades the intensity of each pixel. % % o azimuth, elevation: Define the light source direction. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *ShadeImage(const Image *image,const MagickBooleanType gray, const double azimuth,const double elevation,ExceptionInfo *exception) { #define GetShadeIntensity(image,pixel) \ ClampPixel(GetPixelIntensity((image),(pixel))) #define ShadeImageTag "Shade/Image" CacheView *image_view, *shade_view; Image *linear_image, *shade_image; MagickBooleanType status; MagickOffsetType progress; PrimaryInfo light; ssize_t y; /* Initialize shaded image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); linear_image=CloneImage(image,0,0,MagickTrue,exception); shade_image=CloneImage(image,0,0,MagickTrue,exception); if ((linear_image == (Image *) NULL) || (shade_image == (Image *) NULL)) { if (linear_image != (Image *) NULL) linear_image=DestroyImage(linear_image); if (shade_image != (Image *) NULL) shade_image=DestroyImage(shade_image); return((Image *) NULL); } if (SetImageStorageClass(shade_image,DirectClass,exception) == MagickFalse) { linear_image=DestroyImage(linear_image); shade_image=DestroyImage(shade_image); return((Image *) NULL); } /* Compute the light vector. */ light.x=(double) QuantumRange*cos(DegreesToRadians(azimuth))* cos(DegreesToRadians(elevation)); light.y=(double) QuantumRange*sin(DegreesToRadians(azimuth))* cos(DegreesToRadians(elevation)); light.z=(double) QuantumRange*sin(DegreesToRadians(elevation)); /* Shade image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(linear_image,exception); shade_view=AcquireAuthenticCacheView(shade_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(linear_image,shade_image,linear_image->rows,1) #endif for (y=0; y < (ssize_t) linear_image->rows; y++) { double distance, normal_distance, shade; PrimaryInfo normal; register const Quantum *magick_restrict center, *magick_restrict p, *magick_restrict post, *magick_restrict pre; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,-1,y-1,linear_image->columns+2,3, exception); q=QueueCacheViewAuthenticPixels(shade_view,0,y,shade_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } /* Shade this row of pixels. */ normal.z=2.0*(double) QuantumRange; /* constant Z of surface normal */ for (x=0; x < (ssize_t) linear_image->columns; x++) { register ssize_t i; /* Determine the surface normal and compute shading. */ pre=p+GetPixelChannels(linear_image); center=pre+(linear_image->columns+2)*GetPixelChannels(linear_image); post=center+(linear_image->columns+2)*GetPixelChannels(linear_image); normal.x=(double) ( GetShadeIntensity(linear_image,pre-GetPixelChannels(linear_image))+ GetShadeIntensity(linear_image,center-GetPixelChannels(linear_image))+ GetShadeIntensity(linear_image,post-GetPixelChannels(linear_image))- GetShadeIntensity(linear_image,pre+GetPixelChannels(linear_image))- GetShadeIntensity(linear_image,center+GetPixelChannels(linear_image))- GetShadeIntensity(linear_image,post+GetPixelChannels(linear_image))); normal.y=(double) ( GetShadeIntensity(linear_image,post-GetPixelChannels(linear_image))+ GetShadeIntensity(linear_image,post)+ GetShadeIntensity(linear_image,post+GetPixelChannels(linear_image))- GetShadeIntensity(linear_image,pre-GetPixelChannels(linear_image))- GetShadeIntensity(linear_image,pre)- GetShadeIntensity(linear_image,pre+GetPixelChannels(linear_image))); if ((fabs(normal.x) <= MagickEpsilon) && (fabs(normal.y) <= MagickEpsilon)) shade=light.z; else { shade=0.0; distance=normal.x*light.x+normal.y*light.y+normal.z*light.z; if (distance > MagickEpsilon) { normal_distance=normal.x*normal.x+normal.y*normal.y+ normal.z*normal.z; if (normal_distance > (MagickEpsilon*MagickEpsilon)) shade=distance/sqrt((double) normal_distance); } } for (i=0; i < (ssize_t) GetPixelChannels(linear_image); i++) { PixelChannel channel; PixelTrait shade_traits, traits; channel=GetPixelChannelChannel(linear_image,i); traits=GetPixelChannelTraits(linear_image,channel); shade_traits=GetPixelChannelTraits(shade_image,channel); if ((traits == UndefinedPixelTrait) || (shade_traits == UndefinedPixelTrait)) continue; if ((shade_traits & CopyPixelTrait) != 0) { SetPixelChannel(shade_image,channel,center[i],q); continue; } if ((traits & UpdatePixelTrait) == 0) { SetPixelChannel(shade_image,channel,center[i],q); continue; } if (gray != MagickFalse) { SetPixelChannel(shade_image,channel,ClampToQuantum(shade),q); continue; } SetPixelChannel(shade_image,channel,ClampToQuantum(QuantumScale*shade* center[i]),q); } p+=GetPixelChannels(linear_image); q+=GetPixelChannels(shade_image); } if (SyncCacheViewAuthenticPixels(shade_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(image,ShadeImageTag,progress,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } shade_view=DestroyCacheView(shade_view); image_view=DestroyCacheView(image_view); linear_image=DestroyImage(linear_image); if (status == MagickFalse) shade_image=DestroyImage(shade_image); return(shade_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S h a r p e n I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SharpenImage() sharpens the image. We convolve the image with a Gaussian % operator of the given radius and standard deviation (sigma). For % reasonable results, radius should be larger than sigma. Use a radius of 0 % and SharpenImage() selects a suitable radius for you. % % Using a separable kernel would be faster, but the negative weights cancel % out on the corners of the kernel producing often undesirable ringing in the % filtered result; this can be avoided by using a 2D gaussian shaped image % sharpening kernel instead. % % The format of the SharpenImage method is: % % Image *SharpenImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Laplacian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SharpenImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { double gamma, normalize; Image *sharp_image; KernelInfo *kernel_info; register ssize_t i; size_t width; ssize_t j, u, v; assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); width=GetOptimalKernelWidth2D(radius,sigma); kernel_info=AcquireKernelInfo((const char *) NULL,exception); if (kernel_info == (KernelInfo *) NULL) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); (void) memset(kernel_info,0,sizeof(*kernel_info)); kernel_info->width=width; kernel_info->height=width; kernel_info->x=(ssize_t) (width-1)/2; kernel_info->y=(ssize_t) (width-1)/2; kernel_info->signature=MagickCoreSignature; kernel_info->values=(MagickRealType *) MagickAssumeAligned( AcquireAlignedMemory(kernel_info->width,kernel_info->height* sizeof(*kernel_info->values))); if (kernel_info->values == (MagickRealType *) NULL) { kernel_info=DestroyKernelInfo(kernel_info); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } normalize=0.0; j=(ssize_t) (kernel_info->width-1)/2; i=0; for (v=(-j); v <= j; v++) { for (u=(-j); u <= j; u++) { kernel_info->values[i]=(MagickRealType) (-exp(-((double) u*u+v*v)/(2.0* MagickSigma*MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma)); normalize+=kernel_info->values[i]; i++; } } kernel_info->values[i/2]=(double) ((-2.0)*normalize); normalize=0.0; for (i=0; i < (ssize_t) (kernel_info->width*kernel_info->height); i++) normalize+=kernel_info->values[i]; gamma=PerceptibleReciprocal(normalize); for (i=0; i < (ssize_t) (kernel_info->width*kernel_info->height); i++) kernel_info->values[i]*=gamma; sharp_image=ConvolveImage(image,kernel_info,exception); kernel_info=DestroyKernelInfo(kernel_info); return(sharp_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S p r e a d I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SpreadImage() is a special effects method that randomly displaces each % pixel in a square area defined by the radius parameter. % % The format of the SpreadImage method is: % % Image *SpreadImage(const Image *image, % const PixelInterpolateMethod method,const double radius, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o method: intepolation method. % % o radius: choose a random pixel in a neighborhood of this extent. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SpreadImage(const Image *image, const PixelInterpolateMethod method,const double radius, ExceptionInfo *exception) { #define SpreadImageTag "Spread/Image" CacheView *image_view, *spread_view; Image *spread_image; MagickBooleanType status; MagickOffsetType progress; RandomInfo **magick_restrict random_info; size_t width; ssize_t y; #if defined(MAGICKCORE_OPENMP_SUPPORT) unsigned long key; #endif /* Initialize spread image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); spread_image=CloneImage(image,0,0,MagickTrue,exception); if (spread_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(spread_image,DirectClass,exception) == MagickFalse) { spread_image=DestroyImage(spread_image); return((Image *) NULL); } /* Spread image. */ status=MagickTrue; progress=0; width=GetOptimalKernelWidth1D(radius,0.5); random_info=AcquireRandomInfoThreadSet(); image_view=AcquireVirtualCacheView(image,exception); spread_view=AcquireAuthenticCacheView(spread_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) key=GetRandomSecretKey(random_info[0]); #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(image,spread_image,image->rows,key == ~0UL) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=QueueCacheViewAuthenticPixels(spread_view,0,y,spread_image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { PointInfo point; point.x=GetPseudoRandomValue(random_info[id]); point.y=GetPseudoRandomValue(random_info[id]); status=InterpolatePixelChannels(image,image_view,spread_image,method, (double) x+width*(point.x-0.5),(double) y+width*(point.y-0.5),q, exception); if (status == MagickFalse) break; q+=GetPixelChannels(spread_image); } if (SyncCacheViewAuthenticPixels(spread_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(image,SpreadImageTag,progress,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } spread_view=DestroyCacheView(spread_view); image_view=DestroyCacheView(image_view); random_info=DestroyRandomInfoThreadSet(random_info); if (status == MagickFalse) spread_image=DestroyImage(spread_image); return(spread_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % U n s h a r p M a s k I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % UnsharpMaskImage() sharpens one or more image channels. We convolve the % image with a Gaussian operator of the given radius and standard deviation % (sigma). For reasonable results, radius should be larger than sigma. Use a % radius of 0 and UnsharpMaskImage() selects a suitable radius for you. % % The format of the UnsharpMaskImage method is: % % Image *UnsharpMaskImage(const Image *image,const double radius, % const double sigma,const double amount,const double threshold, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the center % pixel. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o gain: the percentage of the difference between the original and the % blur image that is added back into the original. % % o threshold: the threshold in pixels needed to apply the diffence gain. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *UnsharpMaskImage(const Image *image,const double radius, const double sigma,const double gain,const double threshold, ExceptionInfo *exception) { #define SharpenImageTag "Sharpen/Image" CacheView *image_view, *unsharp_view; Image *unsharp_image; MagickBooleanType status; MagickOffsetType progress; double quantum_threshold; ssize_t y; assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); #if defined(MAGICKCORE_OPENCL_SUPPORT) unsharp_image=AccelerateUnsharpMaskImage(image,radius,sigma,gain,threshold, exception); if (unsharp_image != (Image *) NULL) return(unsharp_image); #endif unsharp_image=BlurImage(image,radius,sigma,exception); if (unsharp_image == (Image *) NULL) return((Image *) NULL); quantum_threshold=(double) QuantumRange*threshold; /* Unsharp-mask image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); unsharp_view=AcquireAuthenticCacheView(unsharp_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(image,unsharp_image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(unsharp_view,0,y,unsharp_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { double pixel; PixelChannel channel; PixelTrait traits, unsharp_traits; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); unsharp_traits=GetPixelChannelTraits(unsharp_image,channel); if ((traits == UndefinedPixelTrait) || (unsharp_traits == UndefinedPixelTrait)) continue; if ((unsharp_traits & CopyPixelTrait) != 0) { SetPixelChannel(unsharp_image,channel,p[i],q); continue; } pixel=p[i]-(double) GetPixelChannel(unsharp_image,channel,q); if (fabs(2.0*pixel) < quantum_threshold) pixel=(double) p[i]; else pixel=(double) p[i]+gain*pixel; SetPixelChannel(unsharp_image,channel,ClampToQuantum(pixel),q); } p+=GetPixelChannels(image); q+=GetPixelChannels(unsharp_image); } if (SyncCacheViewAuthenticPixels(unsharp_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(image,SharpenImageTag,progress,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } unsharp_image->type=image->type; unsharp_view=DestroyCacheView(unsharp_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) unsharp_image=DestroyImage(unsharp_image); return(unsharp_image); }