/** @file Main file for compression routine. Compression routine. The compression algorithm is a mixture of LZ77 and Huffman coding. LZ77 transforms the source data into a sequence of Original Characters and Pointers to repeated strings. This sequence is further divided into Blocks and Huffman codings are applied to each Block. Copyright (c) 2007 - 2016, Intel Corporation. All rights reserved.<BR> This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include <Uefi.h> #include <Library/MemoryAllocationLib.h> #include <Library/BaseMemoryLib.h> #include <Library/DebugLib.h> #include <Library/ShellLib.h> // // Macro Definitions // typedef INT16 NODE; #define UINT8_MAX 0xff #define UINT8_BIT 8 #define THRESHOLD 3 #define INIT_CRC 0 #define WNDBIT 13 #define WNDSIZ (1U << WNDBIT) #define MAXMATCH 256 #define BLKSIZ (1U << 14) // 16 * 1024U #define PERC_FLAG 0x8000U #define CODE_BIT 16 #define NIL 0 #define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX) #define HASH(LoopVar7, LoopVar5) ((LoopVar7) + ((LoopVar5) << (WNDBIT - 9)) + WNDSIZ * 2) #define CRCPOLY 0xA001 #define UPDATE_CRC(LoopVar5) mCrc = mCrcTable[(mCrc ^ (LoopVar5)) & 0xFF] ^ (mCrc >> UINT8_BIT) // // C: the Char&Len Set; P: the Position Set; T: the exTra Set // #define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD) #define CBIT 9 #define NP (WNDBIT + 1) #define PBIT 4 #define NT (CODE_BIT + 3) #define TBIT 5 #if NT > NP #define NPT NT #else #define NPT NP #endif // // Function Prototypes // /** Put a dword to output stream @param[in] Data The dword to put. **/ VOID PutDword( IN UINT32 Data ); // // Global Variables // STATIC UINT8 *mSrc; STATIC UINT8 *mDst; STATIC UINT8 *mSrcUpperLimit; STATIC UINT8 *mDstUpperLimit; STATIC UINT8 *mLevel; STATIC UINT8 *mText; STATIC UINT8 *mChildCount; STATIC UINT8 *mBuf; STATIC UINT8 mCLen[NC]; STATIC UINT8 mPTLen[NPT]; STATIC UINT8 *mLen; STATIC INT16 mHeap[NC + 1]; STATIC INT32 mRemainder; STATIC INT32 mMatchLen; STATIC INT32 mBitCount; STATIC INT32 mHeapSize; STATIC INT32 mTempInt32; STATIC UINT32 mBufSiz = 0; STATIC UINT32 mOutputPos; STATIC UINT32 mOutputMask; STATIC UINT32 mSubBitBuf; STATIC UINT32 mCrc; STATIC UINT32 mCompSize; STATIC UINT32 mOrigSize; STATIC UINT16 *mFreq; STATIC UINT16 *mSortPtr; STATIC UINT16 mLenCnt[17]; STATIC UINT16 mLeft[2 * NC - 1]; STATIC UINT16 mRight[2 * NC - 1]; STATIC UINT16 mCrcTable[UINT8_MAX + 1]; STATIC UINT16 mCFreq[2 * NC - 1]; STATIC UINT16 mCCode[NC]; STATIC UINT16 mPFreq[2 * NP - 1]; STATIC UINT16 mPTCode[NPT]; STATIC UINT16 mTFreq[2 * NT - 1]; STATIC NODE mPos; STATIC NODE mMatchPos; STATIC NODE mAvail; STATIC NODE *mPosition; STATIC NODE *mParent; STATIC NODE *mPrev; STATIC NODE *mNext = NULL; INT32 mHuffmanDepth = 0; /** Make a CRC table. **/ VOID MakeCrcTable ( VOID ) { UINT32 LoopVar1; UINT32 LoopVar2; UINT32 LoopVar4; for (LoopVar1 = 0; LoopVar1 <= UINT8_MAX; LoopVar1++) { LoopVar4 = LoopVar1; for (LoopVar2 = 0; LoopVar2 < UINT8_BIT; LoopVar2++) { if ((LoopVar4 & 1) != 0) { LoopVar4 = (LoopVar4 >> 1) ^ CRCPOLY; } else { LoopVar4 >>= 1; } } mCrcTable[LoopVar1] = (UINT16) LoopVar4; } } /** Put a dword to output stream @param[in] Data The dword to put. **/ VOID PutDword ( IN UINT32 Data ) { if (mDst < mDstUpperLimit) { *mDst++ = (UINT8) (((UINT8) (Data)) & 0xff); } if (mDst < mDstUpperLimit) { *mDst++ = (UINT8) (((UINT8) (Data >> 0x08)) & 0xff); } if (mDst < mDstUpperLimit) { *mDst++ = (UINT8) (((UINT8) (Data >> 0x10)) & 0xff); } if (mDst < mDstUpperLimit) { *mDst++ = (UINT8) (((UINT8) (Data >> 0x18)) & 0xff); } } /** Allocate memory spaces for data structures used in compression process. @retval EFI_SUCCESS Memory was allocated successfully. @retval EFI_OUT_OF_RESOURCES A memory allocation failed. **/ EFI_STATUS AllocateMemory ( VOID ) { mText = AllocateZeroPool (WNDSIZ * 2 + MAXMATCH); mLevel = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mLevel)); mChildCount = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mChildCount)); mPosition = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mPosition)); mParent = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mParent)); mPrev = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mPrev)); mNext = AllocateZeroPool ((MAX_HASH_VAL + 1) * sizeof (*mNext)); mBufSiz = BLKSIZ; mBuf = AllocateZeroPool (mBufSiz); while (mBuf == NULL) { mBufSiz = (mBufSiz / 10U) * 9U; if (mBufSiz < 4 * 1024U) { return EFI_OUT_OF_RESOURCES; } mBuf = AllocateZeroPool (mBufSiz); } mBuf[0] = 0; return EFI_SUCCESS; } /** Called when compression is completed to free memory previously allocated. **/ VOID FreeMemory ( VOID ) { SHELL_FREE_NON_NULL (mText); SHELL_FREE_NON_NULL (mLevel); SHELL_FREE_NON_NULL (mChildCount); SHELL_FREE_NON_NULL (mPosition); SHELL_FREE_NON_NULL (mParent); SHELL_FREE_NON_NULL (mPrev); SHELL_FREE_NON_NULL (mNext); SHELL_FREE_NON_NULL (mBuf); } /** Initialize String Info Log data structures. **/ VOID InitSlide ( VOID ) { NODE LoopVar1; SetMem (mLevel + WNDSIZ, (UINT8_MAX + 1) * sizeof (UINT8), 1); SetMem (mPosition + WNDSIZ, (UINT8_MAX + 1) * sizeof (NODE), 0); SetMem (mParent + WNDSIZ, WNDSIZ * sizeof (NODE), 0); mAvail = 1; for (LoopVar1 = 1; LoopVar1 < WNDSIZ - 1; LoopVar1++) { mNext[LoopVar1] = (NODE) (LoopVar1 + 1); } mNext[WNDSIZ - 1] = NIL; SetMem (mNext + WNDSIZ * 2, (MAX_HASH_VAL - WNDSIZ * 2 + 1) * sizeof (NODE), 0); } /** Find child node given the parent node and the edge character @param[in] LoopVar6 The parent node. @param[in] LoopVar5 The edge character. @return The child node. @retval NIL(Zero) No child could be found. **/ NODE Child ( IN NODE LoopVar6, IN UINT8 LoopVar5 ) { NODE LoopVar4; LoopVar4 = mNext[HASH (LoopVar6, LoopVar5)]; mParent[NIL] = LoopVar6; /* sentinel */ while (mParent[LoopVar4] != LoopVar6) { LoopVar4 = mNext[LoopVar4]; } return LoopVar4; } /** Create a new child for a given parent node. @param[in] LoopVar6 The parent node. @param[in] LoopVar5 The edge character. @param[in] LoopVar4 The child node. **/ VOID MakeChild ( IN NODE LoopVar6, IN UINT8 LoopVar5, IN NODE LoopVar4 ) { NODE LoopVar12; NODE LoopVar10; LoopVar12 = (NODE) HASH (LoopVar6, LoopVar5); LoopVar10 = mNext[LoopVar12]; mNext[LoopVar12] = LoopVar4; mNext[LoopVar4] = LoopVar10; mPrev[LoopVar10] = LoopVar4; mPrev[LoopVar4] = LoopVar12; mParent[LoopVar4] = LoopVar6; mChildCount[LoopVar6]++; } /** Split a node. @param[in] Old The node to split. **/ VOID Split ( IN NODE Old ) { NODE New; NODE LoopVar10; New = mAvail; mAvail = mNext[New]; mChildCount[New] = 0; LoopVar10 = mPrev[Old]; mPrev[New] = LoopVar10; mNext[LoopVar10] = New; LoopVar10 = mNext[Old]; mNext[New] = LoopVar10; mPrev[LoopVar10] = New; mParent[New] = mParent[Old]; mLevel[New] = (UINT8) mMatchLen; mPosition[New] = mPos; MakeChild (New, mText[mMatchPos + mMatchLen], Old); MakeChild (New, mText[mPos + mMatchLen], mPos); } /** Insert string info for current position into the String Info Log. **/ VOID InsertNode ( VOID ) { NODE LoopVar6; NODE LoopVar4; NODE LoopVar2; NODE LoopVar10; UINT8 LoopVar5; UINT8 *TempString3; UINT8 *TempString2; if (mMatchLen >= 4) { // // We have just got a long match, the target tree // can be located by MatchPos + 1. Travese the tree // from bottom up to get to a proper starting point. // The usage of PERC_FLAG ensures proper node deletion // in DeleteNode() later. // mMatchLen--; LoopVar4 = (NODE) ((mMatchPos + 1) | WNDSIZ); LoopVar6 = mParent[LoopVar4]; while (LoopVar6 == NIL) { LoopVar4 = mNext[LoopVar4]; LoopVar6 = mParent[LoopVar4]; } while (mLevel[LoopVar6] >= mMatchLen) { LoopVar4 = LoopVar6; LoopVar6 = mParent[LoopVar6]; } LoopVar10 = LoopVar6; while (mPosition[LoopVar10] < 0) { mPosition[LoopVar10] = mPos; LoopVar10 = mParent[LoopVar10]; } if (LoopVar10 < WNDSIZ) { mPosition[LoopVar10] = (NODE) (mPos | PERC_FLAG); } } else { // // Locate the target tree // LoopVar6 = (NODE) (mText[mPos] + WNDSIZ); LoopVar5 = mText[mPos + 1]; LoopVar4 = Child (LoopVar6, LoopVar5); if (LoopVar4 == NIL) { MakeChild (LoopVar6, LoopVar5, mPos); mMatchLen = 1; return ; } mMatchLen = 2; } // // Traverse down the tree to find a match. // Update Position value along the route. // Node split or creation is involved. // for (;;) { if (LoopVar4 >= WNDSIZ) { LoopVar2 = MAXMATCH; mMatchPos = LoopVar4; } else { LoopVar2 = mLevel[LoopVar4]; mMatchPos = (NODE) (mPosition[LoopVar4] & ~PERC_FLAG); } if (mMatchPos >= mPos) { mMatchPos -= WNDSIZ; } TempString3 = &mText[mPos + mMatchLen]; TempString2 = &mText[mMatchPos + mMatchLen]; while (mMatchLen < LoopVar2) { if (*TempString3 != *TempString2) { Split (LoopVar4); return ; } mMatchLen++; TempString3++; TempString2++; } if (mMatchLen >= MAXMATCH) { break; } mPosition[LoopVar4] = mPos; LoopVar6 = LoopVar4; LoopVar4 = Child (LoopVar6, *TempString3); if (LoopVar4 == NIL) { MakeChild (LoopVar6, *TempString3, mPos); return ; } mMatchLen++; } LoopVar10 = mPrev[LoopVar4]; mPrev[mPos] = LoopVar10; mNext[LoopVar10] = mPos; LoopVar10 = mNext[LoopVar4]; mNext[mPos] = LoopVar10; mPrev[LoopVar10] = mPos; mParent[mPos] = LoopVar6; mParent[LoopVar4] = NIL; // // Special usage of 'next' // mNext[LoopVar4] = mPos; } /** Delete outdated string info. (The Usage of PERC_FLAG ensures a clean deletion). **/ VOID DeleteNode ( VOID ) { NODE LoopVar6; NODE LoopVar4; NODE LoopVar11; NODE LoopVar10; NODE LoopVar9; if (mParent[mPos] == NIL) { return ; } LoopVar4 = mPrev[mPos]; LoopVar11 = mNext[mPos]; mNext[LoopVar4] = LoopVar11; mPrev[LoopVar11] = LoopVar4; LoopVar4 = mParent[mPos]; mParent[mPos] = NIL; if (LoopVar4 >= WNDSIZ) { return ; } mChildCount[LoopVar4]--; if (mChildCount[LoopVar4] > 1) { return ; } LoopVar10 = (NODE) (mPosition[LoopVar4] & ~PERC_FLAG); if (LoopVar10 >= mPos) { LoopVar10 -= WNDSIZ; } LoopVar11 = LoopVar10; LoopVar6 = mParent[LoopVar4]; LoopVar9 = mPosition[LoopVar6]; while ((LoopVar9 & PERC_FLAG) != 0){ LoopVar9 &= ~PERC_FLAG; if (LoopVar9 >= mPos) { LoopVar9 -= WNDSIZ; } if (LoopVar9 > LoopVar11) { LoopVar11 = LoopVar9; } mPosition[LoopVar6] = (NODE) (LoopVar11 | WNDSIZ); LoopVar6 = mParent[LoopVar6]; LoopVar9 = mPosition[LoopVar6]; } if (LoopVar6 < WNDSIZ) { if (LoopVar9 >= mPos) { LoopVar9 -= WNDSIZ; } if (LoopVar9 > LoopVar11) { LoopVar11 = LoopVar9; } mPosition[LoopVar6] = (NODE) (LoopVar11 | WNDSIZ | PERC_FLAG); } LoopVar11 = Child (LoopVar4, mText[LoopVar10 + mLevel[LoopVar4]]); LoopVar10 = mPrev[LoopVar11]; LoopVar9 = mNext[LoopVar11]; mNext[LoopVar10] = LoopVar9; mPrev[LoopVar9] = LoopVar10; LoopVar10 = mPrev[LoopVar4]; mNext[LoopVar10] = LoopVar11; mPrev[LoopVar11] = LoopVar10; LoopVar10 = mNext[LoopVar4]; mPrev[LoopVar10] = LoopVar11; mNext[LoopVar11] = LoopVar10; mParent[LoopVar11] = mParent[LoopVar4]; mParent[LoopVar4] = NIL; mNext[LoopVar4] = mAvail; mAvail = LoopVar4; } /** Read in source data @param[out] LoopVar7 The buffer to hold the data. @param[in] LoopVar8 The number of bytes to read. @return The number of bytes actually read. **/ INT32 FreadCrc ( OUT UINT8 *LoopVar7, IN INT32 LoopVar8 ) { INT32 LoopVar1; for (LoopVar1 = 0; mSrc < mSrcUpperLimit && LoopVar1 < LoopVar8; LoopVar1++) { *LoopVar7++ = *mSrc++; } LoopVar8 = LoopVar1; LoopVar7 -= LoopVar8; mOrigSize += LoopVar8; LoopVar1--; while (LoopVar1 >= 0) { UPDATE_CRC (*LoopVar7++); LoopVar1--; } return LoopVar8; } /** Advance the current position (read in new data if needed). Delete outdated string info. Find a match string for current position. @retval TRUE The operation was successful. @retval FALSE The operation failed due to insufficient memory. **/ BOOLEAN GetNextMatch ( VOID ) { INT32 LoopVar8; VOID *Temp; mRemainder--; mPos++; if (mPos == WNDSIZ * 2) { Temp = AllocateZeroPool (WNDSIZ + MAXMATCH); if (Temp == NULL) { return (FALSE); } CopyMem (Temp, &mText[WNDSIZ], WNDSIZ + MAXMATCH); CopyMem (&mText[0], Temp, WNDSIZ + MAXMATCH); FreePool (Temp); LoopVar8 = FreadCrc (&mText[WNDSIZ + MAXMATCH], WNDSIZ); mRemainder += LoopVar8; mPos = WNDSIZ; } DeleteNode (); InsertNode (); return (TRUE); } /** Send entry LoopVar1 down the queue. @param[in] LoopVar1 The index of the item to move. **/ VOID DownHeap ( IN INT32 i ) { INT32 LoopVar1; INT32 LoopVar2; // // priority queue: send i-th entry down heap // LoopVar2 = mHeap[i]; LoopVar1 = 2 * i; while (LoopVar1 <= mHeapSize) { if (LoopVar1 < mHeapSize && mFreq[mHeap[LoopVar1]] > mFreq[mHeap[LoopVar1 + 1]]) { LoopVar1++; } if (mFreq[LoopVar2] <= mFreq[mHeap[LoopVar1]]) { break; } mHeap[i] = mHeap[LoopVar1]; i = LoopVar1; LoopVar1 = 2 * i; } mHeap[i] = (INT16) LoopVar2; } /** Count the number of each code length for a Huffman tree. @param[in] LoopVar1 The top node. **/ VOID CountLen ( IN INT32 LoopVar1 ) { if (LoopVar1 < mTempInt32) { mLenCnt[(mHuffmanDepth < 16) ? mHuffmanDepth : 16]++; } else { mHuffmanDepth++; CountLen (mLeft[LoopVar1]); CountLen (mRight[LoopVar1]); mHuffmanDepth--; } } /** Create code length array for a Huffman tree. @param[in] Root The root of the tree. **/ VOID MakeLen ( IN INT32 Root ) { INT32 LoopVar1; INT32 LoopVar2; UINT32 Cum; for (LoopVar1 = 0; LoopVar1 <= 16; LoopVar1++) { mLenCnt[LoopVar1] = 0; } CountLen (Root); // // Adjust the length count array so that // no code will be generated longer than its designated length // Cum = 0; for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) { Cum += mLenCnt[LoopVar1] << (16 - LoopVar1); } while (Cum != (1U << 16)) { mLenCnt[16]--; for (LoopVar1 = 15; LoopVar1 > 0; LoopVar1--) { if (mLenCnt[LoopVar1] != 0) { mLenCnt[LoopVar1]--; mLenCnt[LoopVar1 + 1] += 2; break; } } Cum--; } for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) { LoopVar2 = mLenCnt[LoopVar1]; LoopVar2--; while (LoopVar2 >= 0) { mLen[*mSortPtr++] = (UINT8) LoopVar1; LoopVar2--; } } } /** Assign code to each symbol based on the code length array. @param[in] LoopVar8 The number of symbols. @param[in] Len The code length array. @param[out] Code The stores codes for each symbol. **/ VOID MakeCode ( IN INT32 LoopVar8, IN UINT8 Len[ ], OUT UINT16 Code[ ] ) { INT32 LoopVar1; UINT16 Start[18]; Start[1] = 0; for (LoopVar1 = 1; LoopVar1 <= 16; LoopVar1++) { Start[LoopVar1 + 1] = (UINT16) ((Start[LoopVar1] + mLenCnt[LoopVar1]) << 1); } for (LoopVar1 = 0; LoopVar1 < LoopVar8; LoopVar1++) { Code[LoopVar1] = Start[Len[LoopVar1]]++; } } /** Generates Huffman codes given a frequency distribution of symbols. @param[in] NParm The number of symbols. @param[in] FreqParm The frequency of each symbol. @param[out] LenParm The code length for each symbol. @param[out] CodeParm The code for each symbol. @return The root of the Huffman tree. **/ INT32 MakeTree ( IN INT32 NParm, IN UINT16 FreqParm[ ], OUT UINT8 LenParm[ ], OUT UINT16 CodeParm[ ] ) { INT32 LoopVar1; INT32 LoopVar2; INT32 LoopVar3; INT32 Avail; // // make tree, calculate len[], return root // mTempInt32 = NParm; mFreq = FreqParm; mLen = LenParm; Avail = mTempInt32; mHeapSize = 0; mHeap[1] = 0; for (LoopVar1 = 0; LoopVar1 < mTempInt32; LoopVar1++) { mLen[LoopVar1] = 0; if ((mFreq[LoopVar1]) != 0) { mHeapSize++; mHeap[mHeapSize] = (INT16) LoopVar1; } } if (mHeapSize < 2) { CodeParm[mHeap[1]] = 0; return mHeap[1]; } for (LoopVar1 = mHeapSize / 2; LoopVar1 >= 1; LoopVar1--) { // // make priority queue // DownHeap (LoopVar1); } mSortPtr = CodeParm; do { LoopVar1 = mHeap[1]; if (LoopVar1 < mTempInt32) { *mSortPtr++ = (UINT16) LoopVar1; } mHeap[1] = mHeap[mHeapSize--]; DownHeap (1); LoopVar2 = mHeap[1]; if (LoopVar2 < mTempInt32) { *mSortPtr++ = (UINT16) LoopVar2; } LoopVar3 = Avail++; mFreq[LoopVar3] = (UINT16) (mFreq[LoopVar1] + mFreq[LoopVar2]); mHeap[1] = (INT16) LoopVar3; DownHeap (1); mLeft[LoopVar3] = (UINT16) LoopVar1; mRight[LoopVar3] = (UINT16) LoopVar2; } while (mHeapSize > 1); mSortPtr = CodeParm; MakeLen (LoopVar3); MakeCode (NParm, LenParm, CodeParm); // // return root // return LoopVar3; } /** Outputs rightmost LoopVar8 bits of x @param[in] LoopVar8 The rightmost LoopVar8 bits of the data is used. @param[in] x The data. **/ VOID PutBits ( IN INT32 LoopVar8, IN UINT32 x ) { UINT8 Temp; if (LoopVar8 < mBitCount) { mSubBitBuf |= x << (mBitCount -= LoopVar8); } else { Temp = (UINT8)(mSubBitBuf | (x >> (LoopVar8 -= mBitCount))); if (mDst < mDstUpperLimit) { *mDst++ = Temp; } mCompSize++; if (LoopVar8 < UINT8_BIT) { mSubBitBuf = x << (mBitCount = UINT8_BIT - LoopVar8); } else { Temp = (UINT8)(x >> (LoopVar8 - UINT8_BIT)); if (mDst < mDstUpperLimit) { *mDst++ = Temp; } mCompSize++; mSubBitBuf = x << (mBitCount = 2 * UINT8_BIT - LoopVar8); } } } /** Encode a signed 32 bit number. @param[in] LoopVar5 The number to encode. **/ VOID EncodeC ( IN INT32 LoopVar5 ) { PutBits (mCLen[LoopVar5], mCCode[LoopVar5]); } /** Encode a unsigned 32 bit number. @param[in] LoopVar7 The number to encode. **/ VOID EncodeP ( IN UINT32 LoopVar7 ) { UINT32 LoopVar5; UINT32 LoopVar6; LoopVar5 = 0; LoopVar6 = LoopVar7; while (LoopVar6 != 0) { LoopVar6 >>= 1; LoopVar5++; } PutBits (mPTLen[LoopVar5], mPTCode[LoopVar5]); if (LoopVar5 > 1) { PutBits(LoopVar5 - 1, LoopVar7 & (0xFFFFU >> (17 - LoopVar5))); } } /** Count the frequencies for the Extra Set. **/ VOID CountTFreq ( VOID ) { INT32 LoopVar1; INT32 LoopVar3; INT32 LoopVar8; INT32 Count; for (LoopVar1 = 0; LoopVar1 < NT; LoopVar1++) { mTFreq[LoopVar1] = 0; } LoopVar8 = NC; while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) { LoopVar8--; } LoopVar1 = 0; while (LoopVar1 < LoopVar8) { LoopVar3 = mCLen[LoopVar1++]; if (LoopVar3 == 0) { Count = 1; while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) { LoopVar1++; Count++; } if (Count <= 2) { mTFreq[0] = (UINT16) (mTFreq[0] + Count); } else if (Count <= 18) { mTFreq[1]++; } else if (Count == 19) { mTFreq[0]++; mTFreq[1]++; } else { mTFreq[2]++; } } else { ASSERT((LoopVar3+2)<(2 * NT - 1)); mTFreq[LoopVar3 + 2]++; } } } /** Outputs the code length array for the Extra Set or the Position Set. @param[in] LoopVar8 The number of symbols. @param[in] nbit The number of bits needed to represent 'LoopVar8'. @param[in] Special The special symbol that needs to be take care of. **/ VOID WritePTLen ( IN INT32 LoopVar8, IN INT32 nbit, IN INT32 Special ) { INT32 LoopVar1; INT32 LoopVar3; while (LoopVar8 > 0 && mPTLen[LoopVar8 - 1] == 0) { LoopVar8--; } PutBits (nbit, LoopVar8); LoopVar1 = 0; while (LoopVar1 < LoopVar8) { LoopVar3 = mPTLen[LoopVar1++]; if (LoopVar3 <= 6) { PutBits (3, LoopVar3); } else { PutBits (LoopVar3 - 3, (1U << (LoopVar3 - 3)) - 2); } if (LoopVar1 == Special) { while (LoopVar1 < 6 && mPTLen[LoopVar1] == 0) { LoopVar1++; } PutBits (2, (LoopVar1 - 3) & 3); } } } /** Outputs the code length array for Char&Length Set. **/ VOID WriteCLen ( VOID ) { INT32 LoopVar1; INT32 LoopVar3; INT32 LoopVar8; INT32 Count; LoopVar8 = NC; while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) { LoopVar8--; } PutBits (CBIT, LoopVar8); LoopVar1 = 0; while (LoopVar1 < LoopVar8) { LoopVar3 = mCLen[LoopVar1++]; if (LoopVar3 == 0) { Count = 1; while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) { LoopVar1++; Count++; } if (Count <= 2) { for (LoopVar3 = 0; LoopVar3 < Count; LoopVar3++) { PutBits (mPTLen[0], mPTCode[0]); } } else if (Count <= 18) { PutBits (mPTLen[1], mPTCode[1]); PutBits (4, Count - 3); } else if (Count == 19) { PutBits (mPTLen[0], mPTCode[0]); PutBits (mPTLen[1], mPTCode[1]); PutBits (4, 15); } else { PutBits (mPTLen[2], mPTCode[2]); PutBits (CBIT, Count - 20); } } else { ASSERT((LoopVar3+2)<NPT); PutBits (mPTLen[LoopVar3 + 2], mPTCode[LoopVar3 + 2]); } } } /** Huffman code the block and output it. **/ VOID SendBlock ( VOID ) { UINT32 LoopVar1; UINT32 LoopVar3; UINT32 Flags; UINT32 Root; UINT32 Pos; UINT32 Size; Flags = 0; Root = MakeTree (NC, mCFreq, mCLen, mCCode); Size = mCFreq[Root]; PutBits (16, Size); if (Root >= NC) { CountTFreq (); Root = MakeTree (NT, mTFreq, mPTLen, mPTCode); if (Root >= NT) { WritePTLen (NT, TBIT, 3); } else { PutBits (TBIT, 0); PutBits (TBIT, Root); } WriteCLen (); } else { PutBits (TBIT, 0); PutBits (TBIT, 0); PutBits (CBIT, 0); PutBits (CBIT, Root); } Root = MakeTree (NP, mPFreq, mPTLen, mPTCode); if (Root >= NP) { WritePTLen (NP, PBIT, -1); } else { PutBits (PBIT, 0); PutBits (PBIT, Root); } Pos = 0; for (LoopVar1 = 0; LoopVar1 < Size; LoopVar1++) { if (LoopVar1 % UINT8_BIT == 0) { Flags = mBuf[Pos++]; } else { Flags <<= 1; } if ((Flags & (1U << (UINT8_BIT - 1))) != 0){ EncodeC(mBuf[Pos++] + (1U << UINT8_BIT)); LoopVar3 = mBuf[Pos++] << UINT8_BIT; LoopVar3 += mBuf[Pos++]; EncodeP (LoopVar3); } else { EncodeC (mBuf[Pos++]); } } SetMem (mCFreq, NC * sizeof (UINT16), 0); SetMem (mPFreq, NP * sizeof (UINT16), 0); } /** Start the huffman encoding. **/ VOID HufEncodeStart ( VOID ) { SetMem (mCFreq, NC * sizeof (UINT16), 0); SetMem (mPFreq, NP * sizeof (UINT16), 0); mOutputPos = mOutputMask = 0; mBitCount = UINT8_BIT; mSubBitBuf = 0; } /** Outputs an Original Character or a Pointer. @param[in] LoopVar5 The original character or the 'String Length' element of a Pointer. @param[in] LoopVar7 The 'Position' field of a Pointer. **/ VOID CompressOutput ( IN UINT32 LoopVar5, IN UINT32 LoopVar7 ) { STATIC UINT32 CPos; if ((mOutputMask >>= 1) == 0) { mOutputMask = 1U << (UINT8_BIT - 1); if (mOutputPos >= mBufSiz - 3 * UINT8_BIT) { SendBlock (); mOutputPos = 0; } CPos = mOutputPos++; mBuf[CPos] = 0; } mBuf[mOutputPos++] = (UINT8) LoopVar5; mCFreq[LoopVar5]++; if (LoopVar5 >= (1U << UINT8_BIT)) { mBuf[CPos] = (UINT8)(mBuf[CPos]|mOutputMask); mBuf[mOutputPos++] = (UINT8)(LoopVar7 >> UINT8_BIT); mBuf[mOutputPos++] = (UINT8) LoopVar7; LoopVar5 = 0; while (LoopVar7!=0) { LoopVar7 >>= 1; LoopVar5++; } mPFreq[LoopVar5]++; } } /** End the huffman encoding. **/ VOID HufEncodeEnd ( VOID ) { SendBlock (); // // Flush remaining bits // PutBits (UINT8_BIT - 1, 0); } /** The main controlling routine for compression process. @retval EFI_SUCCESS The compression is successful. @retval EFI_OUT_0F_RESOURCES Not enough memory for compression process. **/ EFI_STATUS Encode ( VOID ) { EFI_STATUS Status; INT32 LastMatchLen; NODE LastMatchPos; Status = AllocateMemory (); if (EFI_ERROR (Status)) { FreeMemory (); return Status; } InitSlide (); HufEncodeStart (); mRemainder = FreadCrc (&mText[WNDSIZ], WNDSIZ + MAXMATCH); mMatchLen = 0; mPos = WNDSIZ; InsertNode (); if (mMatchLen > mRemainder) { mMatchLen = mRemainder; } while (mRemainder > 0) { LastMatchLen = mMatchLen; LastMatchPos = mMatchPos; if (!GetNextMatch ()) { Status = EFI_OUT_OF_RESOURCES; } if (mMatchLen > mRemainder) { mMatchLen = mRemainder; } if (mMatchLen > LastMatchLen || LastMatchLen < THRESHOLD) { // // Not enough benefits are gained by outputting a pointer, // so just output the original character // CompressOutput(mText[mPos - 1], 0); } else { // // Outputting a pointer is beneficial enough, do it. // CompressOutput(LastMatchLen + (UINT8_MAX + 1 - THRESHOLD), (mPos - LastMatchPos - 2) & (WNDSIZ - 1)); LastMatchLen--; while (LastMatchLen > 0) { if (!GetNextMatch ()) { Status = EFI_OUT_OF_RESOURCES; } LastMatchLen--; } if (mMatchLen > mRemainder) { mMatchLen = mRemainder; } } } HufEncodeEnd (); FreeMemory (); return (Status); } /** The compression routine. @param[in] SrcBuffer The buffer containing the source data. @param[in] SrcSize The number of bytes in SrcBuffer. @param[in] DstBuffer The buffer to put the compressed image in. @param[in, out] DstSize On input the size (in bytes) of DstBuffer, on return the number of bytes placed in DstBuffer. @retval EFI_SUCCESS The compression was sucessful. @retval EFI_BUFFER_TOO_SMALL The buffer was too small. DstSize is required. **/ EFI_STATUS Compress ( IN VOID *SrcBuffer, IN UINT64 SrcSize, IN VOID *DstBuffer, IN OUT UINT64 *DstSize ) { EFI_STATUS Status; // // Initializations // mBufSiz = 0; mBuf = NULL; mText = NULL; mLevel = NULL; mChildCount = NULL; mPosition = NULL; mParent = NULL; mPrev = NULL; mNext = NULL; mSrc = SrcBuffer; mSrcUpperLimit = mSrc + SrcSize; mDst = DstBuffer; mDstUpperLimit = mDst +*DstSize; PutDword (0L); PutDword (0L); MakeCrcTable (); mOrigSize = mCompSize = 0; mCrc = INIT_CRC; // // Compress it // Status = Encode (); if (EFI_ERROR (Status)) { return EFI_OUT_OF_RESOURCES; } // // Null terminate the compressed data // if (mDst < mDstUpperLimit) { *mDst++ = 0; } // // Fill in compressed size and original size // mDst = DstBuffer; PutDword (mCompSize + 1); PutDword (mOrigSize); // // Return // if (mCompSize + 1 + 8 > *DstSize) { *DstSize = mCompSize + 1 + 8; return EFI_BUFFER_TOO_SMALL; } else { *DstSize = mCompSize + 1 + 8; return EFI_SUCCESS; } }